Work Energy And Power Ques 1

1. Consider a drop of rain water having mass $1$ $ \mathrm{g}$ falling from a height of $1$ $ \mathrm{km}$. It hits the ground with a speed of $50$ $ \mathrm{m} / \mathrm{s}$. Take ‘g’ constant with a value $10 $ $\mathrm{m} / \mathrm{s}^2$. The work done by the (i) gravitational force and the (ii) resistive force of air is

[2017]

(a) $\quad $ (i) $1.25 $ $\mathrm{J} \quad $ (ii) $-8.25 $ $\mathrm{J}$

(b) $\quad $ (i) $100 $ $\mathrm{J} \quad $ (ii) $8.75 $ $\mathrm{J}$

(c) $\quad $ (i) $10 $ $\mathrm{J} \quad\quad $ (ii) $-8.75 $ $\mathrm{J}$

(d) $\quad $ (i) $-10 $ $\mathrm{J} \quad $ (ii) $-8.25 $ $\mathrm{J}$

Show Answer

Answer:

Correct Answer: 1.(c)

Solution: (c) From work-energy theorem,

$ \mathrm{W}_g+\mathrm{W}_a=\Delta \mathrm{K} . \mathrm{E} \text {. } $

or, $m g h+\mathrm{W}_a=\frac{1}{2} m v^2-0$

$10^{-3} \times 10 \times 10^3+\mathrm{W}_a=\frac{1}{2} \times 10^{-3} \times(50)^2$

$ \Rightarrow \mathrm{W}_a=-8.75 $ $\mathrm{J} $

which is the work done due to air resistance

Work done due to gravity $=\mathrm{mgh}$

$ =10^{-3} \times 10 \times 10^3=10 $ $\mathrm{J}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ