Work Energy And Power Ques 25

25. Consider a car moving along a straight horizantal road with a speed of $72 km / h$. If the coefficient of static friction between road and tyres is 0.5 , the shortest distance in which the car can be stopped is

[1994]

(a) $30 m$

(b) $40 m$

(c) $72 m$

(d) $20 m$

Show Answer

Answer:

Correct Answer: 25.(b)

Solution:

  1. (b) Force due to friction $=$ kinetic energy

$\mu m g s=\frac{1}{2} m v^{2}$

$[.$ Here, $v=72 km / h=\frac{72000}{60 \times 60}=20 m / s$ ] or , $s=\frac{v^{2}}{2 \mu g}=\frac{20 \times 20}{2 \times 0.5 \times 10}=40 m$

If a body of mass $m$ moves with velocity $u$ on a rough surface and stops after travelling a distance $S$ due to friction. Then, frictional force, $F=ma=$ $\mu R \Rightarrow ma=\mu mg \Rightarrow a=\mu g$

Using $v^{2}=u^{2}-2 a s$

$\Rightarrow 0=u^{2}-2 \mu g S$

$\Rightarrow S=\frac{u^{2}}{2 \mu g}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ