Work Energy And Power Ques 3

[2015]

(a) $\mathrm{W} _{\mathrm{P}}=\mathrm{W} _{\mathrm{Q}} ; \mathrm{W} _{\mathrm{P}}=\mathrm{W} _{\mathrm{Q}}$

(b) $\mathrm{W} _{\mathrm{P}}>\mathrm{W} _{\mathrm{Q}} ; \mathrm{W} _{\mathrm{Q}}>\mathrm{W} _{\mathrm{P}}$

(c) $\mathrm{W} _{\mathrm{P}}<\mathrm{W} _{\mathrm{Q}} ; \mathrm{W} _{\mathrm{Q}}<\mathrm{W} _{\mathrm{P}}$

(d) $\mathrm{W} _{\mathrm{P}}=\mathrm{W} _{\mathrm{Q}} ; \mathrm{W} _{\mathrm{P}}>\mathrm{W} _{\mathrm{Q}}$

Show Answer

Answer:

Correct Answer: 3.(b)

Solution: (b) Case (a): Suppose the two springs are stretched by the same distance $x$. Then

$ \frac{W_P}{W_Q}=\frac{\frac{1}{2} k_p x^2}{\frac{1}{2} k_Q x^2}=\frac{k_p}{k_Q} $

As $\mathrm{k} _{\mathrm{p}}>\mathrm{k} _{\mathrm{Q}}$ so, $\mathrm{W} _{\mathrm{p}}>\mathrm{W} _{\mathrm{Q}}$

Case (b): Suppose the two springs stretched by distance $x_P$ and $x_Q$ by the same force $\mathrm{F}$.

Then,

$ \mathrm{F}=k_p x_p=k_Q x_Q $

$\frac{W_p}{W_Q}=\frac{\frac{1}{2} k_p x_p^2}{\frac{1}{2} k_Q x_Q^2}=\frac{k_p \cdot x_p \cdot x_p}{k_Q \cdot x_Q \cdot x_Q}=\frac{F x_p}{F x_Q}=\frac{k_Q}{k_p} $

$\text { As } k_P>k_Q \quad \therefore \quad \mathrm{W} _{\mathrm{Q}}>\mathrm{W} _{\mathrm{P}}$