Work Energy And Power Ques 3

[2015]

(a) $\mathrm{W} _{\mathrm{P}}=\mathrm{W} _{\mathrm{Q}} ; \mathrm{W} _{\mathrm{P}}=\mathrm{W} _{\mathrm{Q}}$

(b) $\mathrm{W} _{\mathrm{P}}>\mathrm{W} _{\mathrm{Q}} ; \mathrm{W} _{\mathrm{Q}}>\mathrm{W} _{\mathrm{P}}$

(c) $\mathrm{W} _{\mathrm{P}}<\mathrm{W} _{\mathrm{Q}} ; \mathrm{W} _{\mathrm{Q}}<\mathrm{W} _{\mathrm{P}}$

(d) $\mathrm{W} _{\mathrm{P}}=\mathrm{W} _{\mathrm{Q}} ; \mathrm{W} _{\mathrm{P}}>\mathrm{W} _{\mathrm{Q}}$

Show Answer

Answer:

Correct Answer: 3.(b)

Solution: (b) Case (a): Suppose the two springs are stretched by the same distance $x$. Then

$ \frac{W_P}{W_Q}=\frac{\frac{1}{2} k_p x^2}{\frac{1}{2} k_Q x^2}=\frac{k_p}{k_Q} $

As $\mathrm{k} _{\mathrm{p}}>\mathrm{k} _{\mathrm{Q}}$ so, $\mathrm{W} _{\mathrm{p}}>\mathrm{W} _{\mathrm{Q}}$

Case (b): Suppose the two springs stretched by distance $x_P$ and $x_Q$ by the same force $\mathrm{F}$.

Then,

$ \mathrm{F}=k_p x_p=k_Q x_Q $

$\frac{W_p}{W_Q}=\frac{\frac{1}{2} k_p x_p^2}{\frac{1}{2} k_Q x_Q^2}=\frac{k_p \cdot x_p \cdot x_p}{k_Q \cdot x_Q \cdot x_Q}=\frac{F x_p}{F x_Q}=\frac{k_Q}{k_p} $

$\text { As } k_P>k_Q \quad \therefore \quad \mathrm{W} _{\mathrm{Q}}>\mathrm{W} _{\mathrm{P}}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ