Work Energy And Power Ques 34

34. A car of mass $m$ starts from rest and accelerates so that the instantaneous power delivered to the car has a constant magnitude $P_0$. The instantaneous velocity of this car is proportional to :

[2012M]

(a) $t^{2} P_0$

(b) $t^{1 / 2}$

(c) $t^{-1 / 2}$

(d) $\frac{t}{\sqrt{m}}$

Show Answer

Answer:

Correct Answer: 34.(b)

Solution:

  1. (b) Constant power of car $P_0=F \cdot V=$ ma.v

$ P_0=m \frac{d v}{d t} \cdot v $

$P_0 d t=m v d v$ Integrating

$P_0 \cdot t=\frac{m v^{2}}{2}$

$v=\sqrt{\frac{2 P_0 t}{m}}$

$\because P_0, m$ and 2 are constant

$\therefore \quad v \propto \sqrt{t}$

At constant power, $P=$ constant

$P=F v=\frac{m d v}{d t} v=P \quad(\because F=\frac{m d v}{d t})$

$\Rightarrow v d v=\frac{P}{m} d t$

Integrating both sides, we get

$ \begin{align*} & \int v d v=\int \frac{P}{m} t \\ & \Rightarrow \frac{v^{2}}{2}=\frac{P}{m} t+C_1 \tag{i} \end{align*} $

At $t=0, v=0$

$\therefore C_1=0$

From equation (i) we get

$V^{2}=\frac{2 P t}{m} \Rightarrow V=(\frac{2 P t}{m})^{1 / 2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ