Work Energy And Power Ques 46

46. On a frictionless surface a block of mass $M$ moving at speed $v$ collides elastically with another block of same mass $M$ which is initially at rest. After collision the first block moves at an angle $\theta$ to its initial direction and has a speed

$\frac{v}{3}$. The second block’s speed after the collision is :

[2015 RS]

(a) $\frac{3}{4} v$

(b) $\frac{3}{\sqrt{2}} v$

(c) $\frac{\sqrt{3}}{2} v$

(d) $\frac{2 \sqrt{2}}{3} v$

Show Answer

Answer:

Correct Answer: 46.(d)

Solution:

  1. (d) Here, $M_1=M_2$ and $u_2=0$

$ u_1=V, \quad V_1=\frac{V}{3} ; \quad V_2=? $

From figure, along $x$-axis,

$M_1 u_1+M_2 u_2=M_1 V_1 \cos \theta+M_2 V_2 \cos \phi \ldots$ (i) Along $y$-axis

$0=M_1 V_1 \sin \theta-M_2 V_s \sin \phi$

By law of conservation of kinetic energy,

$\frac{1}{2} M_1 u_1^{2}+\frac{1}{2} M_2 u_2^{2}=\frac{1}{2} M_1 V_1^{2}+\frac{1}{2} M_2 V_2^{2}$

Putting $M_1=M_2$ and $u_2=0$ in equation (i), (ii) and (iii) we get,

$\theta+\phi=\frac{\pi}{2}=90^{\circ}$

and $u_1^{2}=V_1^{2}+V_2^{2}$

$V^{2}=(\frac{V}{3})^{2}+V_2^{2}[\because u_1=V.$ and $.V_1=\frac{V}{3}]$

or, $V^{2}-(\frac{V}{3})^{2}=V_2^{2}$

$V^{2}-\frac{V^{2}}{9}=V_2^{2}$

or $V_2^{2}=\frac{8}{9} V^{2} \Rightarrow V_2=\frac{2 \sqrt{2}}{3} V$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ