Work Energy And Power Ques 52

52. Two spheres $A$ and $B$ of masses $m_1$ and $m_2$ respectively collide. $A$ is at rest initially and $B$ is moving with velocity $v$ along $x$-axis. After collision $B$ has a velocity $\frac{v}{2}$ in a direction perpendicular to the original direction. The mass $A$ moves after collision in the direction.

[2012]

(a) Same as that of $B$

(b) Opposite to that of $B^*$

(c) $\theta=\tan ^{-1}(1 / 2)$ from the $x$-axis

(d) $\theta=\tan ^{-1}(-1 / 2)$ from the $x$-axis

Show Answer

Answer:

Correct Answer: 52.(d)

Solution:

  1. (d)

[Before collision] $\quad$ [After collision]

According to law of conservation of linear momentum along $x$-axis, we get

$\Rightarrow m_1(0)+m_2 v=m_1 v^{\prime} \cos \theta$

$\Rightarrow \cos \theta=\frac{m_1 v}{m_2 v^{\prime}}$ $\quad$ …….(i)

Similarly, the law of conservation of linear momentum along the $y$-axis, we get

$\Rightarrow m_1(0)+m_2(0)=m_1 v^{\prime} \sin \theta+m_2 v^{\prime} \sin \theta$

$\Rightarrow \sin \theta=\frac{m_2 v}{2 m_1 v}$ $\quad$ …….(ii)

From equations (i) and (ii),

$\tan \theta=-(\frac{m_2 v}{2 m v^{\prime}}) \times(\frac{m_1 v^{\prime}}{m_2 v})=-\frac{1}{2}$

$\theta=\tan ^{-1}(\frac{-1}{2})$ from the $x$-axis.

Let A move in the direction, which makes an angle $\theta$ with the initial direction i.e.,

$\tan \theta=\frac{v_y}{v_x}=\frac{m_2 v}{2 m_1} \div \frac{m_2 v}{2 m_1}$

$\tan \theta=\frac{1}{2}$

$\Rightarrow \theta=\tan ^{-1}(\frac{1}{2})$ from the $x$-axis.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ