Work Energy And Power Ques 8

8. A particle of mass $10 $ $g$ moves along a circle of radius $6.4 $ $cm$ with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic energy of the particle becomes equal to $8 \times 10^{-4} $ $J$ by the end of the second revolution after the beginning of the motion?

[2016]

(a) $0.1 $ $m / s^{2}$

(b) $0.15 $ $m / s^{2}$

(c) $0.18 $ $m / s^{2}$

(d) $0.2 $ $m / s^{2}$

Show Answer

Answer:

Correct Answer: 8.(a)

Solution:

  1. (a) Given: Mass of particle, $M=10 g=$ $\frac{10}{1000} $ $kg$

radius of circle $R=6.4 $ $cm$

Kinetic energy E of particle $=8 \times 10^{-4}$ $ J$ acceleration $a_t=$ ?

$\frac{1}{2} mv^{2}=E \Rightarrow \frac{1}{2}(\frac{10}{1000}) v^{2}=8 \times 10^{-4}$

$\Rightarrow v^{2}=16 \times 10^{-2}$

$\Rightarrow v=4 \times 10^{-1}=0.4 $ $m / s$

Now using

$v^{2}=u^{2}+2 a_t s \quad(s=4 \pi R)$

$(0.4)^{2}=0^{2}+2 a_t(4 \times \frac{22}{7} \times \frac{6.4}{100})$

$\Rightarrow a_t=(0.4)^{2} \times \frac{7 \times 100}{8 \times 22 \times 6.4}=0.1$ $ m / s^{2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ