Work Energy And Power Ques 9

9. A block of mass $10$ $ kg$, moving in $x$ direction with a constant speed of $10 $ $ms^{-1}$, is subject to a retarding force $F=0.1 x $ $J / m$ during its travel from $x=20 $ $m$ to $30$ $ m$. Its final $KE$ will be:

[2015]

(a) $450 $ $J$

(b) $275 $ $J$

(c) $250 $ $J$

(d) $475 $ $J$

Show Answer

Answer:

Correct Answer: 9.(d)

Solution:

  1. (d) Given, $m=10 $ $kg$

$u=10$ $ m / sec$

Retarding force, $F=0.1 x $ $J / m$

Acceleration, $a=\frac{F}{m}$

$a=\frac{0.1 x}{10}=0.01 x$

From, $v^{2}=u^{2}-2 a s$

$\Rightarrow v^{2}=(10)^{2}-2 \times 0.01 \int _{20}^{30} x d x$

$\Rightarrow v^{2}=100-0.02[\frac{x^{2}}{2}] _{20}^{30}$

$\Rightarrow v^{2}=100-\frac{0.02}{2}[(30)^{2}-(20)^{2}]$

$\Rightarrow v^{2}=100-0.01[900-400]$

$\Rightarrow v^{2}=100-0.01[500]$

$\Rightarrow v^{2}=95$ $ m / sec$

Final K.E. $=\frac{1}{2} m v^{2}$

$=\frac{1}{2} \times 10 \times 95 \Rightarrow 475 $ $J$

From, $F=m a$

$a=\frac{F}{m}=\frac{0.1 x}{10}=0.01 x=V \frac{d V}{d x}$

So, $ \int _{v_1}^{v_2} v d V=\int _{20}^{30} \frac{x}{100} d x $

$ \begin{aligned} &-\frac{V^{2}}{2}| _{V_1} ^{V_2}=.\frac{x^{2}}{200}| _{20} ^{30}=\frac{30 \times 30}{200}-\frac{20 \times 20}{200} \\ &=4.5-2=2.5 \\ & \frac{1}{2} m(V_2^{2}-V_1^{2})=10 \times 2.5 J=-25 J \end{aligned} $

Final K.E.

$ \begin{aligned} & =\frac{1}{2} m v_2^{2}=\frac{1}{2} m v_1^{2}-25=\frac{1}{2} \times 10 \times 10 \times 10-25 \\ & =500-25=475 J \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ