Organic Chemistry Reactions Mindmap - Comprehensive Visual Guide

Organic Chemistry Reactions Mindmap - Comprehensive Visual Guide

πŸ“‹ Introduction

This organic reactions mindmap provides a visual overview of all major organic chemistry reactions, mechanisms, and patterns essential for JEE Advanced preparation. It covers reaction types, mechanisms, and applications systematically.


🎯 Organic Reactions Framework

Main Reaction Categories:

Organic Chemistry Reactions
β”œβ”€β”€ Substitution Reactions
β”œβ”€β”€ Addition Reactions
β”œβ”€β”€ Elimination Reactions
β”œβ”€β”€ Rearrangement Reactions
β”œβ”€β”€ Condensation Reactions
β”œβ”€β”€ Redox Reactions
└── Pericyclic Reactions

πŸ”„ Substitution Reactions

Substitution Reactions Overview:

Substitution Reactions
β”œβ”€β”€ Nucleophilic Substitution
β”‚   β”œβ”€β”€ SN1 Mechanism
β”‚   β”‚   β”œβ”€β”€ Two-step process
β”‚   β”‚   β”œβ”€β”€ Carbocation intermediate
β”‚   β”‚   β”œβ”€β”€ Racemic mixture formation
β”‚   β”‚   └── Rate determining step
β”‚   β”œβ”€β”€ SN2 Mechanism
β”‚   β”‚   β”œβ”€β”€ One-step process
β”‚   β”‚   β”œβ”€β”€ Backside attack
β”‚   β”‚   β”œβ”€β”€ Inversion of configuration
β”‚   β”‚   └── Concerted mechanism
β”‚   β”œβ”€β”€ Factors Affecting SN1 vs SN2
β”‚   β”‚   β”œβ”€β”€ Substrate structure
β”‚   β”‚   β”œβ”€β”€ Nucleophile strength
β”‚   β”‚   β”œβ”€β”€ Solvent effects
β”‚   β”‚   └── Leaving group ability
β”‚   └── Common Examples
β”‚       β”œβ”€β”€ Alkyl halides reactions
β”‚       β”œβ”€β”€ Alcohol substitution
β”‚       └── Ether cleavage
β”œβ”€β”€ Electrophilic Substitution
β”‚   β”œβ”€β”€ Aromatic Electrophilic Substitution
β”‚   β”‚   β”œβ”€β”€ General Mechanism
β”‚   β”‚   β”œβ”€β”€ Sigma Complex Formation
β”‚   β”‚   β”œβ”€β”€ Deprotonation
β”‚   β”‚   └── Re-aromatization
β”‚   β”œβ”€β”€ Electrophiles in EAS
β”‚   β”‚   β”œβ”€β”€ Nitration
β”‚   β”‚   β”œβ”€β”€ Sulfonation
β”‚   β”‚   β”œβ”€β”€ Halogenation
β”‚   β”‚   β”œβ”€β”€ Friedel-Crafts Alkylation
β”‚   β”‚   └── Friedel-Crafts Acylation
β”‚   β”œβ”€β”€ Directing Effects
β”‚   β”‚   β”œβ”€β”€ Activating groups
β”‚   β”‚   β”œβ”€β”€ Deactivating groups
β”‚   β”‚   β”œβ”€β”€ Ortho/para directors
β”‚   β”‚   └── Meta directors
β”‚   └── Aliphatic Electrophilic Substitution
β”‚       β”œβ”€β”€ Enol alkylation
β”‚       β”œβ”€β”€ Enol acylation
β”‚       └── Other electrophilic substitutions
β”œβ”€β”€ Free Radical Substitution
β”‚   β”œβ”€β”€ Halogenation of Alkanes
β”‚   β”œβ”€β”€ Mechanism
β”‚   β”‚   β”œβ”€β”€ Initiation
β”‚   β”‚   β”œβ”€β”€ Propagation
β”‚   β”‚   └── Termination
β”‚   β”œβ”€β”€ Selectivity
β”‚   └── Chain Reactions
└── Nucleophilic Aromatic Substitution
    β”œβ”€β”€ Addition-Elimination Mechanism
    β”œβ”€β”€ Elimination-Addition Mechanism
    └── Factors Influencing NAS

Key Substitution Reaction Patterns:

Essential Substitution Patterns:
1. SN1 Characteristics:
   - Favored by: 3Β° substrates, polar protic solvents
   - Rate: rate = k[substrate]
   - Stereochemistry: Racemization
   - Carbocation rearrangements possible
   - Example: (CH₃)₃C-Br + Hβ‚‚O β†’ (CH₃)₃C-OH

2. SN2 Characteristics:
   - Favored by: 1Β° substrates, polar aprotic solvents
   - Rate: rate = k[substrate][nucleophile]
   - Stereochemistry: Walden inversion
   - No rearrangements
   - Example: CH₃-CHβ‚‚-Br + OH⁻ β†’ CH₃-CHβ‚‚-OH

3. EAS General Mechanism:
   - Step 1: Formation of sigma complex (rate-determining)
   - Step 2: Deprotonation and restoration of aromaticity
   - Example: C₆H₆ + HNO₃ β†’ C₆Hβ‚…NOβ‚‚ + Hβ‚‚O

4. Free Radical Halogenation:
   - Initiation: Clβ‚‚ β†’ 2ClΒ· (UV light)
   - Propagation: ClΒ· + RH β†’ RΒ· + HCl
   - Termination: RΒ· + ClΒ· β†’ RCl
   - Selectivity: 3Β° > 2Β° > 1Β° hydrogens

βž• Addition Reactions

Addition Reactions Overview:

Addition Reactions
β”œβ”€β”€ Electrophilic Addition
β”‚   β”œβ”€β”€ Addition to Alkenes
β”‚   β”‚   β”œβ”€β”€ Hydrogen Halide Addition
β”‚   β”‚   β”‚   β”œβ”€β”€ Markovnikov's Rule
β”‚   β”‚   β”‚   β”œβ”€β”€ Anti-Markovnikov Rule
β”‚   β”‚   β”‚   └── Peroxide Effect
β”‚   β”‚   β”œβ”€β”€ Halogen Addition
β”‚   β”‚   β”œβ”€β”€ Water Addition (Hydration)
β”‚   β”‚   β”œβ”€β”€ Hydrogen Addition (Hydrogenation)
β”‚   β”‚   └── Oxymercuration-Demercuration
β”‚   β”œβ”€β”€ Addition to Alkynes
β”‚   β”‚   β”œβ”€β”€ Similar to alkenes
β”‚   β”‚   β”œβ”€β”€ Double addition possible
β”‚   β”‚   β”œβ”€β”€ Partial hydrogenation
β”‚   β”‚   └── Complete hydrogenation
β”‚   └── Addition to Carbonyl Compounds
β”‚       β”œβ”€β”€ Nucleophilic addition to aldehydes
β”‚       β”œβ”€β”€ Nucleophilic addition to ketones
β”‚       └── Grignard addition
β”œβ”€β”€ Nucleophilic Addition
β”‚   β”œβ”€β”€ Addition to Carbonyl Compounds
β”‚   β”‚   β”œβ”€β”€ General Mechanism
β”‚   β”‚   β”œβ”€β”€ Formation of Tetrahedral Intermediate
β”‚   β”‚   β”œβ”€β”€ Proton Transfer
β”‚   β”‚   └── Product Formation
β”‚   β”œβ”€β”€ Addition to Ξ±,Ξ²-Unsaturated Compounds
β”‚   β”‚   β”œβ”€β”€ 1,2-Addition
β”‚   β”‚   β”œβ”€β”€ 1,4-Addition
β”‚   β”‚   └── Factors Regioselectivity
β”‚   └── Specific Reactions
β”‚       β”œβ”€β”€ Aldol Addition
β”‚       β”œβ”€β”€ Cannizzaro Reaction
β”‚       └── Grignard Reaction
β”œβ”€β”€ Free Radical Addition
β”‚   β”œβ”€β”€ Anti-Markovnikov Hydroboration
β”‚   β”œβ”€β”€ Mechanism
β”‚   └── Regioselectivity
β”œβ”€β”€ Cycloaddition Reactions
β”‚   β”œβ”€β”€ Diels-Alder Reaction
β”‚   β”‚   β”œβ”€β”€ [4+2] Cycloaddition
β”‚   β”‚   β”œβ”€β”€ Concerted Mechanism
β”‚   β”‚   β”œβ”€β”€ Stereochemistry
β”‚   β”‚   └── Substituent Effects
β”‚   β”œβ”€β”€ 1,3-Dipolar Cycloaddition
β”‚   └── [2+2] Cycloaddition
└── Other Addition Reactions
    β”œβ”€β”€ Hydroformylation
    β”œβ”€β”€ Ozonolysis
    β”œβ”€β”€ Epoxidation
    └── Dihydroxylation

Key Addition Reaction Patterns:

Essential Addition Patterns:
1. Markovnikov's Rule:
   - Electrophile adds to carbon with more hydrogens
   - Nucleophile adds to carbon with fewer hydrogens
   - Example: HBr + CH₃-CH=CHβ‚‚ β†’ CH₃-CHBr-CH₃

2. Anti-Markovnikov (Peroxide Effect):
   - In presence of peroxides
   - Br radical adds to less substituted carbon
   - Example: HBr + ROOR β†’ BrΒ· adds to terminal carbon

3. Hydroboration-Oxidation:
   - Anti-Markovnikov hydration
   - Syn addition
   - Step 1: BH₃·THF addition
   - Step 2: Hβ‚‚Oβ‚‚/NaOH oxidation

4. Diels-Alder Reaction:
   - [4+2] cycloaddition
   - Concerted mechanism
   - Syn addition
   - Favored by electron-withdrawing groups on dienophile

5. Aldol Reaction:
   - Nucleophilic addition of enolate to carbonyl
   - Base-catalyzed: enolate formation then addition
   - Acid-catalyzed: protonation then addition
   - Ξ²-hydroxy carbonyl product

βž– Elimination Reactions

Elimination Reactions Overview:

Elimination Reactions
β”œβ”€β”€ E1 Mechanism
β”‚   β”œβ”€β”€ Two-step process
β”‚   β”œβ”€β”€ Carbocation intermediate
β”‚   β”œβ”€β”€ Rate determining step
β”‚   β”œβ”€β”€ E1 vs E2 competition
β”‚   └── Substrate preferences
β”œβ”€β”€ E2 Mechanism
β”‚   β”œβ”€β”€ One-step process
β”‚   β”œβ”€β”€ Concerted mechanism
β”‚   β”œβ”€β”€ Anti-periplanar geometry
β”‚   β”œβ”€β”€ Strong base requirement
β”‚   └── Stereochemistry
β”œβ”€β”€ E1cB Mechanism
β”‚   β”œβ”€β”€ Two-step process
β”‚   β”œβ”€β”€ Carbanion intermediate
β”‚   β”œβ”€β”€ Base-induced elimination
β”‚   └── Poor leaving groups
β”œβ”€β”€ Factors Affecting Elimination
β”‚   β”œβ”€β”€ Substrate structure
β”‚   β”œβ”€β”€ Base strength
β”‚   β”œβ”€β”€ Solvent effects
β”‚   β”œβ”€β”€ Temperature
β”‚   └── Leaving group ability
β”œβ”€β”€ Regioselectivity
β”‚   β”œβ”€β”€ Zaitsev's Rule
β”‚   β”œβ”€β”€ Hofmann Rule
β”‚   └── Factors influencing selectivity
β”œβ”€β”€ Stereochemistry
β”‚   β”œβ”€β”€ E vs Z isomers
β”‚   β”œβ”€β”€ Anti elimination
β”‚   β”œβ”€β”€ Syn elimination
β”‚   └── Geometric requirements
└── Common Examples
    β”œβ”€β”€ Dehydration of alcohols
    β”œβ”€β”€ Dehydrohalogenation of alkyl halides
    └── Elimination from quaternary ammonium salts

Key Elimination Reaction Patterns:

Essential Elimination Patterns:
1. E1 Mechanism:
   - Step 1: Formation of carbocation (slow)
   - Step 2: Base removes Ξ²-hydrogen (fast)
   - Favored by: 3Β° substrates, weak bases, heat
   - Example: (CH₃)₃C-CHβ‚‚Br + Hβ‚‚O β†’ (CH₃)β‚‚C=CHβ‚‚

2. E2 Mechanism:
   - Single step: base removes H, leaving group departs
   - Favored by: 1Β° substrates, strong bases
   - Anti-periplanar geometry required
   - Example: CH₃CHβ‚‚CHβ‚‚Br + NaOH β†’ CH₃CH=CHβ‚‚

3. Zaitsev's Rule:
   - More substituted alkene formed preferentially
   - More stable alkene is major product
   - Exception: Steric hindrance, bulky base

4. Hofmann Rule:
   - Less substituted alkene formed
   - Occurs with bulky bases
   - Example: (CH₃)₃C-N⁺(CH₃)₃ + OH⁻ β†’ CHβ‚‚=C(CH₃)β‚‚

5. E1cB Mechanism:
   - Step 1: Base removes Ξ±-hydrogen (acidic)
   - Step 2: Leaving group departs
   - Occurs with poor leaving groups

πŸ”„ Rearrangement Reactions

Rearrangement Reactions Overview:

Rearrangement Reactions
β”œβ”€β”€ Wagner-Meerwein Rearrangement
β”‚   β”œβ”€β”€ Carbocation rearrangements
β”‚   β”œβ”€β”€ 1,2-Hydride shift
β”‚   β”œβ”€β”€ 1,2-Alkyl shift
β”‚   └── Ring expansion
β”œβ”€β”€ Beckmann Rearrangement
β”‚   β”œβ”€β”€ Oxime to amide
β”‚   β”œβ”€β”€ Mechanism
β”‚   β”œβ”€β”€ Acid catalysis
β”‚   └── Ring expansion examples
β”œβ”€β”€ Hoffmann Rearrangement
β”‚   β”œβ”€β”€ Amide to amine
β”‚   β”œβ”€β”€ Loss of COβ‚‚
β”‚   β”œβ”€β”€ Base conditions
β”‚   └── Ring contraction
β”œβ”€β”€ Pinacol Rearrangement
β”‚   β”œβ”€β”€ Diol to carbonyl
β”‚   β”œβ”€β”€ 1,2-migration
β”‚   β”œβ”€β”€ Acid catalysis
β”‚   └── Rearrangement of pinacols
β”œβ”€β”€ Benzilic Acid Rearrangement
β”‚   β”œβ”€β”€ Ξ±-diketone to Ξ±-hydroxy acid
β”‚   β”œβ”€β”€ Base induced
β”‚   └── Aromatic migration
β”œβ”€β”€ Favorskii Rearrangement
β”‚   β”œβ”€β”€ Ξ±-halo ketone rearrangement
β”‚   β”œβ”€β”€ Ring contraction
β”‚   └── Base conditions
β”œβ”€β”€ Claisen Rearrangement
β”‚   β”œβ”€β”€ Allyl vinyl ether rearrangement
β”‚   β”œβ”€β”€ [3,3]-sigmatropic shift
β”‚   β”œβ”€β”€ Pericyclic reaction
β”‚   └── Stereospecific
β”œβ”€β”€ Cope Rearrangement
β”‚   β”œβ”€β”€ [3,3]-sigmatropic shift
β”‚   β”œβ”€β”€ 1,5-diene rearrangement
β”‚   └── Pericyclic reaction
└── Other Rearrangements
    β”œβ”€β”€ Semipinacol rearrangement
    β”œβ”€β”€ Dieckmann condensation
    └── Fischer indole synthesis

Key Rearrangement Patterns:

Essential Rearrangement Patterns:
1. Wagner-Meerwein Rearrangement:
   - Carbocation-driven
   - 1,2-hydride or alkyl shift
   - More stable carbocation formed
   - Example: (CH₃)₃C⁺ β†’ (CH₃)β‚‚CH-CH₃⁺

2. Beckmann Rearrangement:
   - Oxime β†’ Amide
   - Anti to OH group migrates
   - Acidic conditions
   - Example: Cyclohexanone oxime β†’ Ξ΅-caprolactam

3. Hofmann Rearrangement:
   - Primary amide β†’ primary amine
   - Loss of COβ‚‚
   - Brβ‚‚/NaOH conditions
   - One carbon loss

4. Pinacol Rearrangement:
   - 1,2-diol β†’ carbonyl compound
   - One OH becomes carbonyl
   - One group migrates
   - Acidic conditions

5. Claisen Rearrangement:
   - [3,3]-sigmatropic shift
   - Pericyclic, stereospecific
   - Thermal rearrangement
   - Allyl vinyl ether β†’ Ξ³,Ξ΄-unsaturated carbonyl

πŸ”— Condensation Reactions

Condensation Reactions Overview:

Condensation Reactions
β”œβ”€β”€ Aldol Condensation
β”‚   β”œβ”€β”€ Base-catalyzed aldol condensation
β”‚   β”œβ”€β”€ Acid-catalyzed aldol condensation
β”‚   β”œβ”€β”€ Cross-aldol condensation
β”‚   β”œβ”€β”€ Dehydration to Ξ±,Ξ²-unsaturated carbonyl
β”‚   └── Applications
β”œβ”€β”€ Claisen Condensation
β”‚   β”œβ”€β”€ Base-catalyzed ester condensation
β”‚   β”œβ”€β”€ Intramolecular Claisen (Dieckmann)
β”‚   β”œβ”€β”€ Mixed Claisen condensation
β”‚   └── Synthetic applications
β”œβ”€β”€ Knoevenagel Condensation
β”‚   β”œβ”€β”€ Aldehyde/ketone with active methylene
β”‚   β”œβ”€β”€ Base-catalyzed
β”‚   └── Formation of Ξ±,Ξ²-unsaturated compounds
β”œβ”€β”€ Mannich Reaction
β”‚   β”œβ”€β”€ Three-component condensation
β”‚   β”œβ”€β”€ Ξ²-aminocarbonyl compounds
β”‚   β”œβ”€β”€ Formaldehyde, secondary amine, carbonyl
β”‚   └── Synthetic utility
β”œβ”€β”€ Benzoin Condensation
β”‚   β”œβ”€β”€ Cyanide-catalyzed
β”‚   β”œβ”€β”€ Aromatic aldehydes
β”‚   └── Formation of Ξ±-hydroxy ketones
β”œβ”€β”€ Perkin Reaction
β”‚   β”œβ”€β”€ Aromatic aldehyde + anhydride
β”‚   β”œβ”€β”€ Base-catalyzed
β”‚   └── Cinnamic acid derivatives
└── Other Condensations
    β”œβ”€β”€ Cannizzaro reaction
    β”œβ”€β”€ Schiff base formation
    └── Biginelli reaction

Key Condensation Patterns:

Essential Condensation Patterns:
1. Aldol Condensation:
   - Enolate + carbonyl β†’ Ξ²-hydroxy carbonyl
   - Base: OH⁻ forms enolate
   - Dehydration: β†’ Ξ±,Ξ²-unsaturated carbonyl
   - Cross-aldol: different carbonyl compounds

2. Claisen Condensation:
   - Two esters + base β†’ Ξ²-keto ester
   - One ester must have Ξ±-hydrogen
   - Example: 2CH₃COOCβ‚‚Hβ‚… β†’ CH₃COCHβ‚‚COOCβ‚‚Hβ‚…

3. Knoevenagel Condensation:
   - Aldehyde + active methylene compound
   - Base-catalyzed
   - Forms Ξ±,Ξ²-unsaturated carbonyl

4. Mannich Reaction:
   - Formaldehyde + secondary amine + carbonyl
   - Forms Ξ²-aminocarbonyl compound
   - Three-component condensation

5. Cannizzaro Reaction:
   - Non-enolizable aldehydes
   - Disproportionation: 2RCHO β†’ RCOOH + RCHβ‚‚OH
   - Strong base conditions

⚑ Redox Reactions

Organic Redox Reactions Overview:

Organic Redox Reactions
β”œβ”€β”€ Oxidation Reactions
β”‚   β”œβ”€β”€ Oxidation of Alcohols
β”‚   β”‚   β”œβ”€β”€ Primary alcohol β†’ aldehyde β†’ acid
β”‚   β”‚   β”œβ”€β”€ Secondary alcohol β†’ ketone
β”‚   β”‚   β”œβ”€β”€ Tertiary alcohol - no oxidation
β”‚   β”‚   └── Oxidizing agents
β”‚   β”œβ”€β”€ Oxidation of Aldehydes
β”‚   β”‚   β”œβ”€β”€ Aldehyde β†’ carboxylic acid
β”‚   β”‚   β”œβ”€β”€ Tollens test
β”‚   β”‚   β”œβ”€β”€ Fehling test
β”‚   β”‚   └── Oxidation reagents
β”‚   β”œβ”€β”€ Oxidation of Alkenes
β”‚   β”‚   β”œβ”€β”€ Syn dihydroxylation
β”‚   β”‚   β”œβ”€β”€ Epoxidation
β”‚   β”‚   β”œβ”€β”€ Ozonolysis
β”‚   β”‚   └── Oxidative cleavage
β”‚   └── Other Oxidations
β”‚       β”œβ”€β”€ Oxidation of alkyl side chains
β”‚       β”œβ”€β”€ Oxidation of sulfides
β”‚       └── Baeyer-Villiger oxidation
β”œβ”€β”€ Reduction Reactions
β”‚   β”œβ”€β”€ Reduction of Carbonyl Compounds
β”‚   β”‚   β”œβ”€β”€ Aldehyde β†’ alcohol
β”‚   β”‚   β”œβ”€β”€ Ketone β†’ alcohol
β”‚   β”‚   β”œβ”€β”€ Ester β†’ alcohol
β”‚   β”‚   └── Reducing agents
β”‚   β”œβ”€β”€ Hydrogenation
β”‚   β”‚   β”œβ”€β”€ Alkene β†’ alkane
β”‚   β”‚   β”œβ”€β”€ Alkyne β†’ alkene/alkane
β”‚   β”‚   β”œβ”€β”€ Aromatic β†’ cyclohexane
β”‚   β”‚   └── Catalytic hydrogenation
β”‚   β”œβ”€β”€ Reduction of Nitro Compounds
β”‚   β”‚   β”œβ”€β”€ Nitro β†’ amine
β”‚   β”‚   └── Reducing agents
β”‚   └── Other Reductions
β”‚       β”œβ”€β”€ Clemmensen reduction
β”‚       β”œβ”€β”€ Wolff-Kishner reduction
β”‚       └── Birch reduction
└── Disproportionation Reactions
    β”œβ”€β”€ Cannizzaro reaction
    β”œβ”€β”€ Benzil-benzilic acid rearrangement
    └── Other examples

Key Redox Patterns:

Essential Redox Patterns:
1. Alcohol Oxidation:
   - Primary: RCHβ‚‚OH β†’ RCHO β†’ RCOOH
   - Secondary: Rβ‚‚CHOH β†’ Rβ‚‚CO
   - Tertiary: No oxidation (no Ξ±-hydrogen)

2. Oxidizing Agents:
   - Mild: PCC, Swern oxidation
   - Strong: KMnOβ‚„, CrO₃, HNO₃
   - Selective: Tollens (aldehydes only)

3. Alkene Oxidation:
   - Syn dihydroxylation: OsOβ‚„, KMnOβ‚„ (cold)
   - Epoxidation: mCPBA
   - Ozonolysis: O₃, reductive workup
   - Oxidative cleavage: O₃, oxidative workup

4. Hydrogenation:
   - Catalytic: Hβ‚‚, Pd/C, Pt, Ni
   - Selective: Lindlar's catalyst (alkyne β†’ alkene)
   - Birch reduction: Na/NH₃, aromatic β†’ 1,4-cyclohexadiene

5. Carbonyl Reduction:
   - NaBHβ‚„: aldehydes, ketones
   - LiAlHβ‚„: aldehydes, ketones, esters, acids
   - Catalytic hydrogenation: aldehydes, ketones

πŸ”„ Pericyclic Reactions

Pericyclic Reactions Overview:

Pericyclic Reactions
β”œβ”€β”€ Cycloaddition Reactions
β”‚   β”œβ”€β”€ Diels-Alder Reaction
β”‚   β”‚   β”œβ”€β”€ [4+2] cycloaddition
β”‚   β”‚   β”œβ”€β”€ Concerted mechanism
β”‚   β”‚   β”œβ”€β”€ Stereochemistry
β”‚   β”‚   β”œβ”€β”€ Endo vs exo selectivity
β”‚   β”‚   └── Substituent effects
β”‚   β”œβ”€β”€ 1,3-Dipolar Cycloaddition
β”‚   β”‚   β”œβ”€β”€ [3+2] cycloaddition
β”‚   β”‚   β”œβ”€β”€ Dipoles: nitrone, azide, etc.
β”‚   β”‚   └── Synthetic applications
β”‚   └── [2+2] Cycloaddition
β”‚       β”œβ”€β”€ Photochemical conditions
β”‚       β”œβ”€β”€ Stereospecific
β”‚       └── Examples
β”œβ”€β”€ Electrocyclic Reactions
β”‚   β”œβ”€β”€ Conrotatory vs Disrotatory
β”‚   β”œβ”€β”€ Woodward-Hoffmann rules
β”‚   β”œβ”€β”€ Thermal vs photochemical
β”‚   └── Ring opening/closing
β”œβ”€β”€ Sigmatropic Rearrangements
β”‚   β”œβ”€β”€ [3,3]-Sigmatropic Shifts
β”‚   β”‚   β”œβ”€β”€ Claisen rearrangement
β”‚   β”‚   β”œβ”€β”€ Cope rearrangement
β”‚   β”‚   └── Ireland-Claisen
β”‚   β”œβ”€β”€ [1,5]-Sigmatropic Shifts
β”‚   └── Other sigmatropic rearrangements
β”œβ”€β”€ Group Transfer Reactions
β”‚   β”œβ”€β”€ Ene reactions
β”‚   └── Carbonyl-ene reactions
└── Applications
    β”œβ”€β”€ Natural product synthesis
    β”œβ”€β”€ Pharmaceutical synthesis
    └── Material science

Key Pericyclic Patterns:

Essential Pericyclic Patterns:
1. Diels-Alder Reaction:
   - [4+2] cycloaddition
   - Concerted, stereospecific
   - Thermal: suprafacial on both components
   - Endo rule: electron-withdrawing groups prefer endo
   - Example: Butadiene + maleic anhydride β†’ bicyclic product

2. Electrocyclic Reactions:
   - Ring closure/opening
   - Conrotatory (same direction)
   - Disrotatory (opposite direction)
   - Woodward-Hoffmann rules govern selectivity

3. Claisen Rearrangement:
   - [3,3]-sigmatropic shift
   - Thermal, stereospecific
   - Allyl vinyl ether β†’ Ξ³,Ξ΄-unsaturated carbonyl
   - Six-membered cyclic transition state

4. Cope Rearrangement:
   - [3,3]-sigmatropic shift
   - 1,5-diene rearrangement
   - Thermal, stereospecific
   - Six-membered cyclic transition state

5. Woodward-Hoffmann Rules:
   - Thermal: 4n+2 electrons β†’ suprafacial
   - Thermal: 4n electrons β†’ antarafacial
   - Photochemical: opposite of thermal

🎯 Problem-Solving Strategies

Organic Reaction Problem-Solving Framework:

Systematic Approach:
1. Identify the Functional Groups
   - Recognize all functional groups
   - Note their positions
   - Identify reactive sites
   - Consider electronic effects

2. Determine the Reaction Type
   - Substitution, addition, elimination, etc.
   - Identify electrophile/nucleophile
   - Consider catalyst/reagents
   - Reaction conditions

3. Apply Reaction Mechanism
   - Draw step-by-step mechanism
   - Show electron flow with arrows
   - Consider intermediates
   - Account for stereochemistry

4. Predict Major Product
   - Consider regioselectivity
   - Account for stereoselectivity
   - Consider side reactions
   - Apply governing rules

5. Verify Answer
   - Check electron count
   - Verify formal charges
   - Consider thermodynamics
   - Cross-check with known examples

Common Reaction Patterns:

Pattern Recognition Guide:
1. Look for:
   - Good leaving groups (Br, I, TsO)
   - Strong bases/electrophiles
   - Conjugated systems
   - Aromatic stabilization

2. Consider:
   - Markovnikov vs anti-Markovnikov
   - Zaitsev vs Hofmann products
   - Syn vs anti addition
   - Rearrangements

3. Apply:
   - Reaction mechanisms
   - Stereochemical rules
   - Electronic effects
   - Steric factors

4. Predict:
   - Major product
   - Side products
   - Reaction conditions
   - Yields

πŸ“ˆ Performance Tips

Exam Success Strategies:

  • Master reaction mechanisms with electron-pushing arrows
  • Learn general patterns rather than individual reactions
  • Practice drawing mechanisms extensively
  • Understand stereochemistry and stereochemical outcomes
  • Memorize key reagents and their effects
  • Practice retrosynthetic analysis for synthesis problems

Use this comprehensive organic reactions mindmap to master all JEE Advanced organic chemistry reactions! Systematic practice with these visual aids will significantly enhance your reaction prediction and mechanism understanding. 🎯



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index

sathee Ask SATHEE