Mechanics Mindmap - Comprehensive Visual Guide

Mechanics Mindmap - Comprehensive Visual Guide

πŸ“‹ Introduction

This mechanics mindmap provides a visual overview of all classical mechanics concepts, formulas, and problem-solving techniques essential for JEE Advanced preparation. It covers kinematics, dynamics, work-energy, rotational motion, and gravitation.


🎯 Mechanics Framework

Main Branches:

Mechanics
β”œβ”€β”€ Kinematics
β”œβ”€β”€ Newton's Laws of Motion
β”œβ”€β”€ Work, Energy and Power
β”œβ”€β”€ Rotational Motion
β”œβ”€β”€ Gravitation
└── Properties of Matter

πŸš€ Kinematics

Kinematics Overview:

Kinematics
β”œβ”€β”€ Motion in One Dimension
β”‚   β”œβ”€β”€ Position, Displacement, Distance
β”‚   β”œβ”€β”€ Velocity and Speed
β”‚   β”œβ”€β”€ Acceleration
β”‚   β”œβ”€β”€ Equations of Motion
β”‚   β”œβ”€β”€ Graphical Analysis
β”‚   └── Relative Motion
β”œβ”€β”€ Motion in Two Dimensions
β”‚   β”œβ”€β”€ Vector Representation
β”‚   β”œβ”€β”€ Projectile Motion
β”‚   β”œβ”€β”€ Circular Motion
β”‚   └── Relative Velocity
β”œβ”€β”€ Motion in Three Dimensions
β”‚   β”œβ”€β”€ Vector Analysis
β”‚   β”œβ”€β”€ Curvilinear Motion
β”‚   └── Angular Motion
└── Graphical Kinematics
    β”œβ”€β”€ Position-Time Graphs
    β”œβ”€β”€ Velocity-Time Graphs
    β”œβ”€β”€ Acceleration-Time Graphs
    └── Area Under Curves

Kinematics Key Formulas:

Essential Kinematics Formulas:
1. Equations of Motion (Uniform Acceleration):
   - v = u + at
   - s = ut + Β½atΒ²
   - vΒ² = uΒ² + 2as
   - s = vt - Β½atΒ²
   - s = [(u + v)/2]t

2. Projectile Motion:
   - Time of flight: T = 2u sin ΞΈ/g
   - Maximum height: H = uΒ² sinΒ²ΞΈ/2g
   - Range: R = uΒ² sin 2ΞΈ/g
   - At any time t: x = u cos ΞΈΒ·t, y = u sin ΞΈΒ·t - Β½gtΒ²

3. Circular Motion:
   - Angular velocity: Ο‰ = v/r
   - Centripetal acceleration: a = vΒ²/r = ω²r
   - Period: T = 2Ο€r/v = 2Ο€/Ο‰
   - Frequency: f = 1/T = Ο‰/2Ο€

4. Relative Motion:
   - Relative velocity: v_AB = v_A - v_B
   - River boat problems: Effective velocity
   - Rain drop problems: Relative angles

βš–οΈ Newton’s Laws of Motion

Newton’s Laws Overview:

Newton's Laws of Motion
β”œβ”€β”€ First Law (Inertia)
β”‚   β”œβ”€β”€ Concept of Inertia
β”‚   β”œβ”€β”€ Frame of Reference
β”‚   β”œβ”€β”€ Inertial and Non-inertial Frames
β”‚   └── Applications
β”œβ”€β”€ Second Law (F = ma)
β”‚   β”œβ”€β”€ Force and Acceleration
β”‚   β”œβ”€β”€ Momentum
β”‚   β”œβ”€β”€ Impulse
β”‚   └── Force-Time Graphs
β”œβ”€β”€ Third Law (Action-Reaction)
β”‚   β”œβ”€β”€ Action-Reaction Pairs
β”‚   β”œβ”€β”€ Examples and Applications
β”‚   └── Common Misconceptions
β”œβ”€β”€ Free Body Diagrams
β”‚   β”œβ”€β”€ Drawing FBDs
β”‚   β”œβ”€β”€ Identifying Forces
β”‚   β”œβ”€β”€ Force Resolution
β”‚   └── Equilibrium Conditions
β”œβ”€β”€ Types of Forces
β”‚   β”œβ”€β”€ Contact Forces
β”‚   β”‚   β”œβ”€β”€ Normal Force
β”‚   β”‚   β”œβ”€β”€ Friction
β”‚   β”‚   β”œβ”€β”€ Tension
β”‚   β”‚   └── Spring Force
β”‚   β”œβ”€β”€ Non-contact Forces
β”‚   β”‚   β”œβ”€β”€ Gravitational Force
β”‚   β”‚   β”œβ”€β”€ Electric Force
β”‚   β”‚   └── Magnetic Force
β”‚   └── Pseudo Forces
β”‚       β”œβ”€β”€ Centrifugal Force
β”‚       └── Coriolis Force
└── Applications of Newton's Laws
    β”œβ”€β”€ Connected Bodies
    β”œβ”€β”€ Pulley Systems
    β”œβ”€β”€ Inclined Planes
    β”œβ”€β”€ Circular Motion Dynamics
    └── Banking of Roads

Force Analysis Framework:

Systematic Force Analysis:
1. Draw Free Body Diagram:
   - Identify the object
   - Draw all forces
   - Use proper direction
   - Label forces clearly

2. Apply Newton's Second Law:
   - Ξ£F = ma (in x-direction)
   - Ξ£F = ma (in y-direction)
   - Resolve forces if needed
   - Consider sign conventions

3. Friction Forces:
   - Static friction: f_s ≀ ΞΌ_s N
   - Kinetic friction: f_k = ΞΌ_k N
   - Direction: Opposes relative motion
   - Maximum static friction: f_max = ΞΌ_s N

4. Pulley Systems:
   - Same tension throughout string
   - Consider mass of pulley if significant
   - Account for friction at pulley
   - Multiple pulleys: tension distribution

⚑ Work, Energy and Power

Work-Energy Overview:

Work, Energy and Power
β”œβ”€β”€ Work
β”‚   Definition and Mathematical Expression
β”‚   Types of Work
β”‚   β”‚   β”œβ”€β”€ Positive Work
β”‚   β”‚   β”œβ”€β”€ Negative Work
β”‚   β”‚   └── Zero Work
β”‚   Work Done by Variable Force
β”‚   Work-Energy Theorem
β”‚   └── Conservative and Non-conservative Forces
β”œβ”€β”€ Energy
β”‚   β”œβ”€β”€ Kinetic Energy
β”‚   β”‚   β”œβ”€β”€ Translational KE
β”‚   β”‚   └── Rotational KE
β”‚   β”œβ”€β”€ Potential Energy
β”‚   β”‚   β”œβ”€β”€ Gravitational PE
β”‚   β”‚   β”œβ”€β”€ Elastic PE
β”‚   β”‚   └── Electric PE
β”‚   β”œβ”€β”€ Mechanical Energy
β”‚   β”œβ”€β”€ Conservation of Energy
β”‚   └── Energy Transformations
β”œβ”€β”€ Power
β”‚   Definition and Units
β”‚   Average and Instantaneous Power
β”‚   Power in Circular Motion
β”‚   └── Efficiency
β”œβ”€β”€ Collisions
β”‚   β”œβ”€β”€ Types of Collisions
β”‚   β”‚   β”œβ”€β”€ Elastic Collisions
β”‚   β”‚   β”œβ”€β”€ Inelastic Collisions
β”‚   β”‚   └── Perfectly Inelastic Collisions
β”‚   β”œβ”€β”€ Conservation Laws in Collisions
β”‚   β”œβ”€β”€ Coefficient of Restitution
β”‚   └── Applications
└── Applications of Work-Energy
    β”œβ”€β”€ Simple Machines
    β”œβ”€β”€ Projectiles with Air Resistance
    β”œβ”€β”€ Energy Diagrams
    └── Stability and Potential Energy

Energy Conservation Principles:

Energy Conservation Framework:
1. Work Done by Force:
   - Constant force: W = FΒ·dΒ·cosΞΈ
   - Variable force: W = ∫F·ds
   - Work by gravity: W = mgh
   - Work by spring: W = Β½k(xβ‚‚Β² - x₁²)

2. Kinetic Energy:
   - Translational: KE = Β½mvΒ²
   - Rotational: KE = Β½Iω²
   - Total: KE = Β½mvΒ² + Β½Iω²

3. Potential Energy:
   - Gravitational: PE = mgh
   - Spring: PE = Β½kxΒ²
   - Electric: PE = kq₁qβ‚‚/r

4. Conservation of Energy:
   - E_total = KE + PE = constant
   - Ξ”KE + Ξ”PE = 0 (conservative forces only)
   - W_nc = Ξ”KE + Ξ”PE (with non-conservative forces)

5. Power Calculations:
   - Instantaneous: P = dW/dt = FΒ·v
   - Average: P = W/t
   - Rotational: P = τ·ω

πŸ”„ Rotational Motion

Rotational Motion Overview:

Rotational Motion
β”œβ”€β”€ Rotational Kinematics
β”‚   β”œβ”€β”€ Angular Displacement, Velocity, Acceleration
β”‚   β”œβ”€β”€ Equations of Rotational Motion
β”‚   β”œβ”€β”€ Relation Between Linear and Angular Quantities
β”‚   └── Angular Kinematics Graphs
β”œβ”€β”€ Rotational Dynamics
β”‚   β”œβ”€β”€ Moment of Inertia
β”‚   β”‚   β”œβ”€β”€ Definition
β”‚   β”‚   β”œβ”€β”€ Calculation Methods
β”‚   β”‚   β”œβ”€β”€ Parallel Axis Theorem
β”‚   β”‚   └── Perpendicular Axis Theorem
β”‚   β”œβ”€β”€ Torque
β”‚   β”‚   β”œβ”€β”€ Definition and Direction
β”‚   β”‚   β”œβ”€β”€ Torque Due to Forces
β”‚   β”‚   └── Torque and Angular Acceleration
β”‚   β”œβ”€β”€ Angular Momentum
β”‚   β”‚   β”œβ”€β”€ Definition and Conservation
β”‚   β”‚   β”œβ”€β”€ Angular Momentum of Rigid Bodies
β”‚   β”‚   └── Relation with Linear Momentum
β”‚   └── Rotational Dynamics Equations
β”œβ”€β”€ Rolling Motion
β”‚   β”œβ”€β”€ Pure Rolling
β”‚   β”œβ”€β”€ Rolling Without Slipping
β”‚   β”œβ”€β”€ Rolling with Slipping
β”‚   └── Energy in Rolling Motion
β”œβ”€β”€ Angular Momentum Conservation
β”‚   β”œβ”€β”€ Conservation Principles
β”‚   β”œβ”€β”€ Applications
β”‚   β”œβ”€β”€ Gyroscope
β”‚   └── Precession
└── Applications of Rotational Motion
    β”œβ”€β”€ Figure Skater Effect
    β”œβ”€β”€ Diving and Gymnastics
    β”œβ”€β”€ Rotational Equilibrium
    └── Rotating Reference Frames

Rotational Motion Key Concepts:

Essential Rotational Formulas:
1. Angular Kinematics:
   - Ο‰ = Ο‰β‚€ + Ξ±t
   - ΞΈ = Ο‰β‚€t + Β½Ξ±tΒ²
   - ω² = Ο‰β‚€Β² + 2Ξ±ΞΈ
   - v = rω (linear-angular relationship)
   - a = rΞ± (linear-angular relationship)

2. Moment of Inertia:
   - I = Ξ£mrΒ² (point masses)
   - I = ∫r²dm (continuous distribution)
   - Parallel axis: I = I_cm + MdΒ²
   - Perpendicular axis: I_z = I_x + I_y (lamina)

3. Common Moments of Inertia:
   - Rod (about center): I = MLΒ²/12
   - Rod (about end): I = MLΒ²/3
   - Ring: I = MRΒ²
   - Disk: I = MRΒ²/2
   - Sphere: I = 2MRΒ²/5

4. Torque and Angular Momentum:
   - Ο„ = r Γ— F = IΞ±
   - L = r × p = Iω
   - Ο„ = dL/dt
   - Conservation: L = constant (if Ο„ = 0)

5. Rolling Motion:
   - v_cm = Ο‰R (pure rolling)
   - KE_total = Β½mvΒ² + Β½Iω²
   - KE_trans = Β½mvΒ²
   - KE_rot = Β½Iω²

🌍 Gravitation

Gravitation Overview:

Gravitation
β”œβ”€β”€ Universal Law of Gravitation
β”‚   β”œβ”€β”€ Newton's Law of Gravitation
β”‚   β”œβ”€β”€ Gravitational Constant G
β”‚   β”œβ”€β”€ Vector Form of Gravitational Force
β”‚   └── Superposition Principle
β”œβ”€β”€ Gravitational Field
β”‚   β”œβ”€β”€ Gravitational Field Strength
β”‚   β”œβ”€β”€ Field Due to Various Mass Distributions
β”‚   β”œβ”€β”€ Gravitational Potential
β”‚   └── Equipotential Surfaces
β”œβ”€β”€ Gravitational Potential Energy
β”‚   β”œβ”€β”€ Binding Energy
β”‚   β”œβ”€β”€ Escape Velocity
β”‚   └── Orbital Energy
β”œβ”€β”€ Motion of Planets and Satellites
β”‚   β”œβ”€β”€ Kepler's Laws
β”‚   β”‚   β”œβ”€β”€ First Law (Law of Ellipses)
β”‚   β”‚   β”œβ”€β”€ Second Law (Law of Areas)
β”‚   β”‚   └── Third Law (Law of Periods)
β”‚   β”œβ”€β”€ Orbital Velocity
β”‚   β”œβ”€β”€ Orbital Period
β”‚   └── Satellite Motion
β”œβ”€β”€ Earth's Gravitational Field
β”‚   β”œβ”€β”€ Earth's Shape and Gravity
β”‚   β”œβ”€β”€ Variation of g with Height
β”‚   β”œβ”€β”€ Variation of g with Depth
β”‚   └── Effect of Earth's Rotation
└── Applications of Gravitation
    β”œβ”€β”€ Geostationary Satellites
    β”œβ”€β”€ GPS Systems
    β”œβ”€β”€ Planetary Motion
    └── Tidal Forces

Gravitation Key Formulas:

Essential Gravitation Formulas:
1. Newton's Law of Gravitation:
   - F = G(m₁mβ‚‚/rΒ²)
   - G = 6.67 Γ— 10^-11 NΒ·mΒ²/kgΒ²
   - Vector form: F = -G(m₁mβ‚‚/rΒ²)rΜ‚

2. Gravitational Field:
   - Field strength: g = F/m = GM/rΒ²
   - Gravitational potential: V = -GM/r
   - Field and potential: g = -dV/dr

3. Orbital Motion:
   - Orbital velocity: v = √(GM/r)
   - Orbital period: T = 2Ο€βˆš(rΒ³/GM)
   - Escape velocity: v_e = √(2GM/r)
   - Binding energy: E = -GMm/(2r)

4. Kepler's Laws:
   - First law: Planets move in ellipses
   - Second law: dA/dt = L/(2m) = constant
   - Third law: T² ∝ a³
   - Mathematical form: TΒ² = (4π²/GM)aΒ³

5. Variation of g:
   - With height: g(h) = g(0)/(1 + h/R)Β²
   - With depth: g(d) = g(0)(1 - d/R)
   - At Earth's surface: g = 9.8 m/sΒ²

πŸ”¬ Properties of Matter

Properties of Matter Overview:

Properties of Matter
β”œβ”€β”€ Elasticity
β”‚   β”œβ”€β”€ Stress and Strain
β”‚   β”œβ”€β”€ Hooke's Law
β”‚   β”œβ”€β”€ Elastic Moduli
β”‚   β”‚   β”œβ”€β”€ Young's Modulus
β”‚   β”‚   β”œβ”€β”€ Bulk Modulus
β”‚   β”‚   β”œβ”€β”€ Shear Modulus
β”‚   β”‚   └── Modulus of Rigidity
β”‚   β”œβ”€β”€ Elastic Potential Energy
β”‚   └── Elastic Limit
β”œβ”€β”€ Fluids
β”‚   β”œβ”€β”€ Pressure in Fluids
β”‚   β”œβ”€β”€ Buoyancy and Floatation
β”‚   β”œβ”€β”€ Pascal's Law
β”‚   β”œβ”€β”€ Archimedes' Principle
β”‚   └── Fluid Dynamics
β”‚       β”œβ”€β”€ Equation of Continuity
β”‚       β”œβ”€β”€ Bernoulli's Equation
β”‚       └── Applications
β”œβ”€β”€ Surface Tension
β”‚   β”œβ”€β”€ Surface Tension Force
β”‚   β”œβ”€β”€ Surface Energy
β”‚   β”œβ”€β”€ Capillarity
β”‚   β”œβ”€β”€ Angle of Contact
β”‚   └── Applications
β”œβ”€β”€ Viscosity
β”‚   β”œβ”€β”€ Viscous Force
β”‚   β”œβ”€β”€ Poiseuille's Equation
β”‚   β”œβ”€β”€ Stokes' Law
β”‚   β”œβ”€β”€ Terminal Velocity
β”‚   └── Reynolds Number
└── Mechanical Properties of Solids
    β”œβ”€β”€ Stress-Strain Relationships
    β”œβ”€β”€ Elastic Behavior
    β”œβ”€β”€ Plastic Deformation
    └── Fracture

Mechanical Properties Key Formulas:

Essential Properties of Matter Formulas:
1. Stress and Strain:
   - Stress: Οƒ = F/A
   - Strain: Ξ΅ = Ξ”L/L (linear strain)
   - Volumetric strain: Ξ΅_v = Ξ”V/V
   - Shear strain: Ξ³ = Ξ”x/h

2. Elastic Moduli:
   - Young's modulus: Y = Οƒ/Ξ΅ = FL/(AΒ·Ξ”L)
   - Bulk modulus: K = -P/Ξ΅_v = -PΒ·Ξ”V/V
   - Shear modulus: Ξ· = F/(AΒ·Ξ³)
   - Relation: Y = 9KG/(3K + G)

3. Fluid Statics:
   - Pressure: P = ρgh
   - Buoyant force: F_b = ρ·V·g
   - Pascal's law: P = F/A (transmitted equally)

4. Bernoulli's Equation:
   - P + ½ρv² + ρgh = constant
   - Applications: Venturi meter, airplane wing

5. Viscosity:
   - Viscous force: F = Ξ·A(dv/dy)
   - Terminal velocity: v_t = (2/9)(r²g/η)(ρ_s - ρ_f)
   - Poiseuille's equation: Q = Ο€Pr⁴/(8Ξ·L)

6. Surface Tension:
   - Surface tension force: F = Ξ³L
   - Surface energy: U = Ξ³A
   - Capillary rise: h = 2γcosθ/(ρgr)

🎯 Problem-Solving Strategies

Mechanics Problem-Solving Framework:

Systematic Approach:
1. Understand the Problem
   - Identify the system
   - Determine given quantities
   - Identify what needs to be found
   - Note the constraints

2. Draw Free Body Diagrams
   - Isolate the object
   - Draw all forces
   - Use proper directions
   - Label all quantities

3. Apply Physical Laws
   - Newton's laws (F = ma)
   - Conservation laws
   - Kinematic equations
   - Energy principles

4. Solve Mathematically
   - Choose coordinate system
   - Resolve vectors if needed
   - Apply equations
   - Solve systematically

5. Check and Verify
   - Check units
   - Verify reasonableness
   - Consider special cases
   - Confirm physical sense

Common Problem Types:

Mechanics Problem Categories:
1. Kinematics Problems:
   - Projectile motion
   - Relative motion
   - Circular motion
   - Graphical analysis

2. Dynamics Problems:
   - Connected bodies
   - Inclined planes
   - Pulley systems
   - Circular dynamics

3. Energy Problems:
   - Work-energy theorem
   - Conservation of energy
   - Power calculations
   - Collision analysis

4. Rotational Problems:
   - Moment of inertia
   - Torque and angular acceleration
   - Angular momentum
   - Rolling motion

5. Gravitation Problems:
   - Orbital motion
   - Escape velocity
   - Gravitational potential
   - Kepler's laws

πŸ“ˆ Performance Tips

Exam Success Strategies:

  • Master vector analysis for force problems
  • Practice free body diagrams extensively
  • Memorize all kinematic equations with conditions
  • Understand energy conservation deeply
  • Practice moment of inertia calculations
  • Focus on conceptual understanding over rote memorization

Use this comprehensive mechanics mindmap to master all JEE Advanced mechanics concepts! Systematic practice with these visual aids will significantly enhance your problem-solving abilities. 🎯



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index

sathee Ask SATHEE