Coordination Compounds 2 Question 3

3. The complex ion that will lose its crystal field stabilisation energy upon oxidation of its metal to $+3$ state is

Ignore pairing energy

(a) $\left[Co(\text { phen }) _3\right]^{2+}$

(b) $\left[Ni(\text { phen }) _3\right]^{2+}$

(c) $\left[\operatorname{Zn}(\text { phen }) _3\right]^{2+}$

(d) $\left[Fe(\text { phen }) _3\right]^{2+}$

(2019 Main, 12 April I)

Show Answer

Answer:

Correct Answer: 3. (d)

Solution:

  1. Key Idea: Crystal field splitting occurs due to the presence of ligands in a definite geometry. In octahedral complexes the energy of two, $e _g$ orbitals will increase by $(0.6) \Delta _o$ and that of three $t _{2 g}$ will decrease by $(0.4) \Delta _0$.

The complex ion that will lose its crystal field stabilisation energy upon oxidation of its metal to $+3$ state is $\left[Fe(\text { phen }) _3\right]^{2+}$.

$ \left[Fe(\text { phen }) _3\right]^{2+} \xrightarrow{-e^{-}}\left[Fe(\text { phen }) _3\right]^{3+} $

In $\left[Fe(\text { phen }) _3\right]^{2+}$, electronic configuration of $Fe^{2+}$ is $3 d^{6} 4 s^{0}$. Phenanthrene is a strong field symmetrical bidentate ligand. The splitting of orbital in $Fe^{2+}$ is as follows:

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/cropped_2024_01_16_b4fdca9f34924034e8d8g-263_jpg_height_258_width_493_top_left_y_505_top_left_x_448.jpg"width="300">

CFSE $=6 \times-0.4 \Delta _o=-2.4 \Delta _o$.

The splitting of orbital and arrangement of electrons in $Fe^{3+}$ is as follows :

<img src=“https://temp-public-img-folder.s3.amazonaws.com/sathee.prutor.images/sathee_image/cropped_2024_01_16_b4fdca9f34924034e8d8g-263_jpg_height_250_width_468_top_left_y_897_top_left_x_455.jpg"width="300">

CFSE $=5 \times-0.4 \Delta _o=-2.0 \Delta _o$

$Fe^{2+}$ upon oxidation of its metal to $+3$ state lose its CFSE from $-2.4 \Delta _o$ to $-2.0 \Delta _o$.