Application Of Derivatives Ques 18
18. The slope of the tangent to the curve $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$ at the point $(1,3)$ is
(2014 Adv.)
Show Answer
Answer:
(8)
Solution:
Formula:
Equation of tangent and normal :
- Slope of tangent at the point $\left(x_ {1}, y _{1}\right)$ is $(\frac{d y}{d x}){ } _{\left(x _{1}, y _{1}\right)}$.
Given curve, $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$
$\Rightarrow 2\left(y-x^{5}\right) (\frac{d y}{d x}-5 x^{4})=\left(1+x^{2}\right)^{2}+2 x\left(1+x^{2}\right) \cdot 2 x$
Put $x=1$ and $y=3, d y / d x=8$