Application Of Derivatives Ques 38

38. The set of all $x$ for which $\log (1+x) \leq x$ is equal to ….. .

(1987, 2M)

Show Answer

Answer:

Correct Answer: 38.$x \in (- \frac{1}{2}, 0 ) \cup (\frac {1}{2}), x \in (- \infty , - \frac{1}{2}) \cup (0, \frac{1}{2}) $

Solution:

Formula:

Increasing and decreasing of a function:

  1. Let $f(x)=\log (1+x)-x$
$\Rightarrow$ $f^{\prime}(x)=\frac{1}{1+x}$ $-\frac{x}{1+x}$
$\Rightarrow$ $f^{\prime}(x)>0$
when $-1<x<0$
and $f^{\prime}(x)<0$
when $x>0$

$\therefore f(x)$ is increasing for $-1<x<0$.

$ \begin{array}{lrl} \Rightarrow & f(x) & <f(0) \\ \Rightarrow & \log (1+x) & <x \end{array} $

Again, $f(x)$ is decreasing for $x>0$.

$ \begin{array}{ll} \Rightarrow & f(x)<f(0) \\ \Rightarrow & \log (1+x)<x \\ \therefore & \log (1+x) \leq x, \forall x>-1 \end{array} $