Application Of Derivatives Ques 44

44. Prove that $\sin x+2 x \geq \frac{3 x(x+1)}{\pi}, \forall x \in 0, \frac{\pi}{2}$ (Justify the inequality, if any used).

(2004, 4M)

Show Answer

Solution:

Formula:

Increasing and decreasing of a function:

  1. Let $f(x)=\sin x+2 x-\frac{3 x(x+1)}{\pi}$

On differentiating w.r.t. $x$, we get

$\Rightarrow \quad f^{\prime}(x)=\cos x+2-\frac{(6 x+3)}{\pi}$

$\Rightarrow \quad f^{\prime \prime}(x)=-\sin x-\frac{6}{\pi}<0, \forall x \in [0, \frac{\pi}{2}]$

$\therefore \quad f^{\prime}(x)$ is decreasing for all $x \in [0, \frac{\pi}{2}]$.

$ \begin{array}{lll} \Rightarrow & f^{\prime}(x)>0 & {[\because x<\pi / 2]} \\ \Rightarrow & f^{\prime}(x)>f^{\prime}(\pi / 2) & \end{array} $

$\therefore f(x)$ is increasing.

Thus, when $x \geq 0, f(x) \geq f(0)$

$ \begin{aligned} & \Rightarrow \quad \sin x+2 x-\frac{3 x(x+1)}{\pi} \geq 0 \\ & \Rightarrow \quad \sin x+2 x \geq \frac{3 x(x+1)}{\pi} \end{aligned} $