Application Of Derivatives Ques 7

7. If the normal to the curve $y=f(x)$ at the point $(3,4)$ makes an angle $\frac{3 \pi}{4}$ with the positive $X$-axis, then $f^{\prime}(3)$ is equal to

(2000, 1M)

(a) -1

(b) $-3 / 4$

(c) $4 / 3$

(d) 1

Show Answer

Answer:

Correct Answer: 7.(d)

Solution:

Formula:

Equation of tangent and normal :

  1. Slope of tangent $y=f(x)$ is $\frac{d y}{d x}=f^{\prime}(x)_{(3,4)}$

Therefore, slope of normal

$=-\frac{1}{f^{\prime}(x)_{(3,4)}} =-\frac{1}{f^{\prime}(3)} $

$\text { But } -\frac{1}{f^{\prime}(3)} =\tan (\frac{3 \pi}{4}) [given] $

$\Rightarrow \frac{-1}{f^{\prime}(3)} =\tan (\frac{\pi}{2}+\frac{\pi}{4})=-1 $

$\therefore f^{\prime}(3) =1 $