Current Electricity Ques 27

  1. A copper wire is stretched to make it $0.5$ $ \%$ longer. The percentage change in its electrical resistance, if its volume remains unchanged is

(2019 Main, 9 Jan I)

(a) $2.0$ $ \%$

(b) $1.0 $ $\%$

(c) $0.5 $ $\%$

(d) $2.5 $ $\%$

Show Answer

Answer:

Correct Answer: 27.(b)

Solution:

Formula:

Electrical Resistance:

  1. Electrical resistance of wire of length ’ $l$ ‘, area of cross-section ’ $A$ ’ and resistivity ’ $\rho$ ’ is given as

$ R=\rho \frac{l}{A} $ $\quad$ …….(i)

Since we know, volume of the wire is

$ V=A \times l $ $\quad$ …….(ii)

$\therefore$ From Eqs. (i) and (ii), we get

$ R=o \frac{l^{2}}{V} $ $\quad$ …….(iii)

As, the length has been increased to $0.5 \%$.

$\therefore$ New length of the wire,

$ \begin{aligned} l^{\prime} & =l+0.5 \% \text { of } l \\ & =l+0.005 l=1.005 l \end{aligned} $

But $V$ and $\rho$ remains unchanged.

So, new resistance, $R^{\prime}=\frac{\rho[(1.005) l]^{2}}{V}$ $\quad$ …….(iv)

Dividing Eq. (iv) and Eq. (iii), we get

$ \frac{R^{\prime}}{R}=(1.005)^{2} $

$\Rightarrow \%$ change in the resistance

$ \begin{aligned} & =(\frac{R^{\prime}}{R}-1) \times 100 \\ & =\left[(1.005)^{2}-1\right] \times 100=1.0025 \% \simeq 1 \% \end{aligned} $



Table of Contents