Current Electricity Ques 56

  1. In the given circuit, the internal resistance of the $18 V$ cell is negligible. If $R _1=400$ $ \Omega, R _3=100$ $ \Omega$ and $R _4=500$ $ \Omega$ and the reading of an ideal voltmeter across $R _4$ is $5$ $ V$, then the value of $R _2$ will be

(2019 Main, 9 Jan II)

(a) $550 $ $\Omega$

(b) $230 $ $\Omega$

(c) $300 $ $\Omega$

(d) $450 $ $\Omega$

Show Answer

Answer:

Correct Answer: 56.(c)

Solution:

Formula:

Combination of Resistances:

  1. According to question, the voltage across $R _4$ is 5 volt, then the current across it

According to Ohm’s law,

$\Rightarrow \quad V=I R \quad \Rightarrow \quad 5=I _1 \times R _4 $

$\Rightarrow \quad 5=I _1 \times 500 $

$I _1=\frac{5}{500}=\frac{1}{100} A$

The potential difference across series combination of $R _3$ and $R _4$

$\Rightarrow \quad V _2=\left(R _3+R _4\right) I=600 \times \frac{1}{100}=6$ Volt

So, potential difference (across $R _1$ )

$ V _1=18-6=12 V $

Current through $R _1$ is,

$ I=\frac{V _1}{R _1}=\frac{12}{400}=\frac{3}{100} A $

So current through $R _2$ is,

$ I _2=I-I _1=\frac{3}{100}-\frac{1}{100} A=\frac{2}{100} A $

Now, from $V=I R$, we have,

$ R _2=\frac{V _2}{I _2}=\frac{6}{(2 / 100)}=300$ $ \Omega $



Table of Contents