Current Electricity Ques 97

  1. In a meter bridge, the wire of length $1$ $ m$ has a non-uniform cross-section such that the variation $\frac{d R}{d l}$ of its resistance $R$ with length $l$ is $\frac{d R}{d l} \propto \frac{1}{\sqrt{l}}$.

Two equal resistance are connected as shown in the figure. The galvanometer has zero deflection when the jockey is at point $P$. What is the length $A P$ ?

(2019 Main, 12 Jan I)

(a) $0.3 $ $m$

(b) $0.25 $ $m$

(c) $0.2 $ $m$

(d) $0.35$ $ m$

Show Answer

Answer:

Correct Answer: 97.(b)

Solution:

Formula:

Metre Bridge:

  1. As, galvanometer shows zero deflection.

This means, the meter bridge is balanced.

$ \begin{aligned} \frac{R^{\prime}}{R _{A P}} & =\frac{R^{\prime}}{R _{P B}} \\ \Rightarrow \quad R _{A P} & =R _{P B} \quad …….(i) \end{aligned} $

Now, for meter bridge wire

$ \frac{d R}{d l}=\frac{k}{\sqrt{l}} $

where, ’ $k$ ’ is the constant of proportionality.

$ \Rightarrow \quad d R=\frac{k}{\sqrt{l}} d l $

Integrating both sides, we get

$\Rightarrow R=\int \frac{k}{\sqrt{l}} d l $

$\text { So, } R _{A P}=\int _0^{l} \frac{k}{\sqrt{l}} d l=\left.k(2 \sqrt{l})\right| _0 ^{l}=2 k \sqrt{l} $

$\text { and } R _{P B}=\int _l^{1} \frac{k}{\sqrt{l}} d l=\left.2 k(\sqrt{l})\right| _l ^{1} $

$ =2 k(\sqrt{1}-\sqrt{l})=2 k(1-\sqrt{l})$

Substituting values of $R _{A P}$ and $R _{P B}$ in eq. (i), we get

$R _{A P} =R _{P B} $

$\Rightarrow 2 k \sqrt{l} =2 k(1-\sqrt{l}) $

$\Rightarrow \sqrt{l} =\frac{1}{2} \quad \text { or } \quad l=\frac{1}{4}=0.25 $ $m$



Table of Contents