knowledge-route Maths10 Ch4


title: “Lata knowledge-route-Class10-Math1-2 Merged.Pdf(1)” type: “reveal” weight: 1

POLYNOMIALS

POLYNOMIALS :

An algebraic expression $f(x)$ of the form $(f x)=a_0+a_1 x+a_2 x^{2}+\ldots \ldots .+a_n x^{n}$, where $a_0, a_1, a_2 \ldots \ldots . . a_n$ are real numbers and all the index of $\mathbf{x}$ are non-negative integers is called polynomials in $\mathbf{x}$ and the highest Index $\mathbf{n}$ in called the degree of the polynomial, if $a_n \neq 0$.

POLYNOMIALS :

4.1 (a) Zero Degree Polynomial :

Any non-zero number is regarded as a polynomial of degree zero or zero degree polynomial. For example, $\mathbf{f}(\mathbf{x})=\mathbf{a}$, where $a \neq 0$ is a zero degree polynomial, since we can write $\mathbf{f}(\mathbf{x})=\mathbf{a}$ as $\mathbf{f}(\mathbf{x})=\mathbf{a} \mathbf{x}^{0}$.

POLYNOMIALS :

4.1 (b) Constant Polynomial :

A polynomial of degree zero is called a constant polynomial. For example, $f(x)=7$.

POLYNOMIALS

4.1 (c) Linear Polynomial :

A polynomial of degree 1 is called a linear polynomial.

For example: $p(x)=4 x-3$ and $f(t)=\sqrt{3} t+5$ are linear polynomials.

POLYNOMIALS :

4.1 (d) Quadratic Polynomial :

A polynomial of degree 2 is called quadratic polynomial.

For example: $f(x)=2 x^{2}+5 x-\frac{3}{5}$ and $g(y)=3 y^{2}-5$ are quadratic polynomials with real coefficients.

POLYNOMIALS

IMPORTANT FORMULAE :

$(x+a)^{2}=x^{2}+2 a x+a^{2}$

$(x-a)^{2}=x^{2}-2 a x+a^{2}$

$x^{2}-a^{2}=(x+a)(x-a)$

$x^{3}+a^{3}=(x+a)(x^{2}-a x+a^{2})=(x+a)^{3}-3 x a(x+a)$

$x^{3}-a^{3}=(x-a)(x^{2}+a x+a^{2})=(x-a)^{3}+3 x a(x-a)$

$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$

$(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$

$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)(a^{2}+b^{2}+c^{2}-a b-b c-c a)$

Special Case: If $a+b+c=0$ then $a^{3}+b^{3}+c^{3}=3 a b c$.

POLYNOMIALS

4.2 GRAPH OF POLYNOMIALS :

In algebraic or in set theoretic language the graph of a polynomial $f(x)$ is the collection (or set) of all points $(\mathbf{x}, \mathbf{y})$, where $\mathbf{y}=\mathbf{f}(\mathbf{x})$. In geometrical or in graphical language the graph of a polynomial $f(x)$ is a smooth free hand curve passing through points $.\mathbf{x} _1, \mathbf{y} _1),(\mathbf{x} _2, \mathbf{y} _2),(\mathbf{x} _3, \mathbf{y} _3), \ldots .$. etc. where $\mathbf{y} _1, \mathbf{y} _2, \mathbf{y} _3, \ldots$ are the values of the polynomial $\mathbf{f}(\mathbf{x})$ at $\mathbf{x} _1, \mathbf{x} _2, \mathbf{x} _3, \ldots$ respectively.

In order to draw the graph of a polynomial $\mathbf{f}(\mathbf{x})$, follow the following algorithm.

POLYNOMIALS

ALGORITHM :

Step (i) Find the values $\mathbf{y} _1, \mathbf{y} _2, \ldots . . \mathbf{y} _{\mathbf{n}}$ of polynomial $f(x)$ on different points $\mathbf{x} _1, \mathbf{x} _2, \ldots \ldots . \mathbf{x} _n \ldots \ldots \ldots \ldots$ and prepare a table that gives values of $\mathbf{y}$ or $\mathbf{f}(\mathbf{x})$ for various values of $\mathbf{x}$.

$x:$ $x_1$ $\quad$ $x_2 \ldots \ldots$ $\quad$ $x_n$ $\quad$ $x_{n+1}$ $\quad$ $\ldots$ $\quad$
$y=f(x)$ $y_1=f(x_1) y_2=f(x_2) \ldots$ $\quad$ $Y_n=f(x_n)$ $\quad$ $y_{n+1}=f(x_{n+1})$ $\quad$ …..

Step (ii) Plot that points $(x_1, y_1),(x_2, y_2),(x_3, y_3), \ldots . .(x_n, y_n) \ldots$. on rectangular co-ordinate system. In plotting these points use different scales on the $X$ and $Y$ axes.

Step (iii) Draw a free hand smooth curve passing through points plotted in step 2 to get the graph of the polynomial $\mathbf{f}(\mathbf{x})$.

POLYNOMIALS

4.2 (a) Graph of a Linear Polynomial :

Consider a linear polynomial $f(x)=a x+b, a \neq 0$ Graph of $\mathbf{y}=\mathbf{a x}+\mathbf{b}$ is a straight line. That in why $f(x)=$ $a x+b$ is called a linear polynomial. Since two points determine a straight line, so only two points need to plotted to draw the line $\mathbf{y}=\mathbf{a x}+\mathbf{b}$. The line represented by $\mathbf{y}=\mathbf{a x}+\mathbf{b}$ crosses the $X$-axis at exactly one point, namely $(-\frac{b}{a}, 0)$.

POLYNOMIALS

Ex. 1 Draw the graph of the polynomial $f(x)=2 x-5$. Also, find the coordinates of the point where it crosses $X$ axis.

POLYNOMIALS

Sol. Let $y=2 x-5$.

The following table list the values of $\mathbf{y}$ corresponding to different values of $\mathbf{x}$.

$x$ 1 4
$y$ -3 3

The points A $(1,-3)$ and $B(4,3)$ are plotted on the graph paper on a suitable scale. A line is drawn passing through these points to obtain the graphs of the given polynomial.

alt text

POLYNOMIALS

4.2 (b) Graph of a Quadratic Polynomial :

Let $a, b, c$ be real numbers and $a \neq 0$. Then $f(x)=a x^{2}+b x+c$ is known as a quadratic polynomial in $x$. Graph of the quadratic polynomial i.e. he curve whose equation is $y=a x^{2}+b x+c, a \neq 0$ Graph of $a$ quadratic polynomial is always a parabola.

Let $y=a x^{2}+b x+c$, where $a \neq 0$

$\Rightarrow 4 a y=4 a^{2} x^{2}+4 a b x+4 a c$

$\Rightarrow 4 a y=4 a^{2} x^{2}+4 a b x+b^{2}-b^{2}+4 a c$

$\Rightarrow 4 ay=(2 ax+b)^{2}-(b^{2}-4 ac)$

$\Rightarrow 4 a y+(b^{2}-4 a c)=(2 a x+b)^{2} \Rightarrow 4 a y+(b^{2}-4 a c)=4 a^{2}(x+b / 2 a)^{2}$

$\Rightarrow 4 a{y+\frac{b^{2}-4 a c}{4 a}}=4 a^{2}(x+\frac{b}{2 a})^{2}$

$\Rightarrow(y+\frac{D}{4 a})=a(a+\frac{b}{2 a})^{2}$

POLYNOMIALS

where $\mathbf{D}=\mathbf{b}^{2}$ - $\mathbf{4 a c}$ is the discriminate of the quadratic equation.

POLYNOMIALS

REMARKS :

Shifting the origin at $(-\frac{b}{2 a},-\frac{D}{4 a})$, we have $X=x-(-\frac{b}{2 a})$ and $Y=y-\frac{(-D)}{4 a}$

Substituting these values in (i), we obtain

$Y=a X^{2}$ ….(ii)

which is the standard equation of parabola

Clearly, this is the equation of a parabola having its vertex at $(-\frac{b}{2 a}, \frac{D}{4 a})$.

The parabola opens upwards or downwards according as a $>0$ or $a<0$.

POLYNOMIALS

4.3 SIGN OF QUADRTIV EXPRESSIONS :

Let $\alpha$ be a real root of $\mathbf{a} \mathbf{x}^{2}+\mathbf{b x}+\mathbf{c}=\mathbf{0}$. Then $a \alpha^{2}+b \alpha+c=0$ Point $(\alpha, 0)$ lies on $y=ax x^{2}+bx+c$. Thus, every real root of $a x^{2}+b x+c=0$ represents a point of intersecting of the parabola with the $X$-axis.

Conversely, if the parabola $y=a x^{2}+b x+c$ intersects the $X$-axis at a point $(\alpha, 0)$ then $(\alpha, 0)$ satisfies the equation $y=a x^{2}+b x+c$

$\Rightarrow \quad a \alpha^{2}+b \alpha+c=0 \quad[\alpha.$ is a real root of $ax^{2}+bx+c=0$ ]

Thus, the intersection of the parabola $y=a x^{2}+b x+c$ with $X$-axis gives all the real roots of $a x^{2}+b x+c=$ 0 . Following conclusions may be drawn :-

POLYNOMIALS

(i) If $D>0$, the parabola will intersect the $x$-axis in two distinct points and vice-versa.

The parabola meets $x$-axis at $\alpha=\frac{-b-\sqrt{D}}{2 a}$ and $\beta=\frac{-b+\sqrt{D}}{2 a}$

Roots are real & distinct

POLYNOMIALS

(ii) If $D=0$, the parabola will just touch the $x$-axis at one point and vice-versa.

Roots are equal

POLYNOMIALS

(iii) If $D<0$, the parabola will not intersect $x$-axis at all and vice-versa.

Roots are imaginary

POLYNOMIALS

REMARKS

$\star \quad \forall x \in R, y>0$ only if $a>0$ & $ D \equiv b^{2}-4 ac<0$

$\star \quad \forall x \in R, y<0$ only if $a<0 $ & $ D \equiv b^{2}-4 ac<0$

POLYNOMIALS

Ex. 2 Draw the graph of the polynomial $f(x)=x^{2}-2 x-8$

POLYNOMIALS

Sol. Let $y=x^{2}-2 x-8$.

The following table gives the values of $y$ or $f(x)$ for various values of $x$.

$x$ -4 -3 -2 -1 0 1 2 3 4 5 6
$y=x^{2}-2 x-8$ 16 7 0 -5 -8 -9 -8 -5 0 7 16

alt text

POLYNOMIALS

Let us plot the points $(-4,16),(-3,7),(-2,0),(-1,-5),(0,-8),(1,-9),(2,-8),(3,-5),(4,0),(5,7)$ and $(6,16)$ on a graphs paper and draw a smooth free hand curve passing through these points. The curve thus obtained represents the graphs of the polynomial $f(x)=x^{2}-2 x-8$. This is called a parabola. The lowest point $P$, called a minimum points, is the vertex of the parabola. Vertical line passing through $P$ is called the axis of the parabola. Parabola is symmetric about the axis. So, it is also called the line of symmetry.

POLYNOMIALS

Observations :

From the graphs of the polynomial $f(x)=x^{2}-2 x-8$, following observations can be drawn :

(i) The coefficient of $x^{2}$ in $f(x)=x^{2}-2 x-8$ is 1 (a positive real number) and so the parabola opens upwards.

(ii) $\quad D=b^{2}-4 ac=4+32=36>0$. So, the parabola cuts $X$-axis at two distinct points.

(iii) On comparing the polynomial $x^{2}-2 x-8$ with $a x^{2}+b x+c$, we get $a=1, b=-2$ and $c=-8$.

The vertex of the parabola has coordinates $(1,-9)$ i.e. $(\frac{-b}{2 a}, \frac{-D}{4 a})$, where $D \equiv b^{2}-4 a c$.

(iv) The polynomial $f(x)=x^{2}-2 x-8=(x-4)(x+2)$ is factorizable into two distinct linear factors $(x-4)$ and $(x+2)$. So, the parabola cuts $X$-axis at two distinct points $(4,0)$ and $(-2,0)$. the $x$-coordinates of these points are zeros of $f(x)$.

POLYNOMIALS

Ex. 3 Draw the graphs of the quadratic polynomial $f(x)=3-2 x-x^{2}$.

POLYNOMIALS

Sol. Let $y=f(x)$ or, $y=3-2 x-x^{2}$.

Let us list a few values of $y=3-2 x-x^{2}$ corresponding to a few values of $x$ as follows :

$x$ -5 -4 -3 -2 -1 0 1 2 3 4
$y=3-2 x-x^{2}$ -12 -5 0 3 4 3 0 -5 -12 -21

alt text

POLYNOMIALS

Thus, the following points lie on the graph of the polynomial $y=2-2 x-x^{2}$ :

$(-5,-12),(-4,-5),(-3,0),(-2,4),(-1,4),(0,3),(1$, $0),(2,-5),(3,-12)$ and $(4,-21)$.

Let plot these points on a graph paper and draw a smooth free hand curve passing through these points to obtain the graphs of $y$ $=3-2 x-x^{2}$. The curve thus obtained represents a parabola, as shown in figure. The highest point $P(-1,4)$, is called a maximum points, is the vertex of the parabola. Vertical line through $P$ is the axis of the parabola. Clearly, parabola is symmetric about the axis.

POLYNOMIALS

Observations:Following observations from the graph of the polynomial $f(x)=3-2 x-x^{2}$ is as follows :

(i) The coefficient of $x^{2}$ in $f(x)=3-2 x-x^{2}$ is -1 i.e. a negative real number and so the parabola opens downwards.

(ii) $D \equiv b^{2}-4 ax=4+12=16>0$. So, the parabola cuts $x$-axis two distinct points.

(iii) On comparing the polynomial $3-2 x-x^{2}$ with $a x^{2}+b c+c$, we have $a=-1, b=-2$ and $c=3$. The vertex of the parabola is at the point $(-1,4)$ i.e. at $(\frac{-b}{2 a}, \frac{-D}{4 a})$, where $D=b^{2}-4 a c$.

(iv) The polynomial $f(x)=3-2 x-x^{2}=(1-x)(x+3)$ is factorizable into two distinct linear factors $(1-x)$ and $(x+3)$. So, the parabola cuts $X$-axis at two distinct points $(1,0)$ and $(-3,0)$. The co-ordinates of these points are zeros of $f(x)$.

POLYNOMIALS

4.4 GRAPH OF A CUBIC POLYNOMIAL :

Graphs of a cubic polynomial does not have a fixed standard shape. Cubic polynomial graphs will always cross $X$-axis at least once and at most thrice.

POLYNOMIALS

Ex. 4 Draw the graphs of the polynomial $f(x)=x^{3}-4 x$.

POLYNOMIALS

Sol. Let $y=f(x)$ or, $y=x^{2}-4 x$.

The values of $y$ for variable value of $x$ are listed in the following table :

$x$ -3 -2 -1 0 1 2 3
$y=x^{3}-4 x$ -15 0 3 0 -3 0 15

alt text

POLYNOMIALS

Thus, the curve $y=x^{3}-4 x$ passes through the points $(-3,-15),(-2,0),(-1,3),(0,0),(1,-3),(2,0),(3,15),(4,48)$ etc.Plotting these points on a graph paper and drawing a free hand smooth curve through these points, we obtain the graph of the given polynomial as shown figure.

Observations :

For the graphs of the polynomial $f(x)=x^{3}-4 x$, following observations are as follows :-

(i) The polynomial $f(x)=x^{3}-4 x=x(x^{2}-4)=x(x-2)(x+2)$ is factorizable into three distinct linear factors. The curve $y=f(x)$ also cuts $X$-axis at three distinct points.

(ii) We have, $f(x)=x(x-2)(x+2) \quad$ Therefore 0,2 and -2 are three zeros of $f(x)$. The curve $y$ $=f(x)$ cuts $X$-axis at three points $O(0,0), P(2,0)$ and $Q(-2,0)$.

POLYNOMIALS

4.5 RELATIONSHIP BETWEEN ZEROS AND COEFFICIENTS OF A QUADRATIC POLYNOMIAL :

Let $\alpha$ and $\beta$ be the zeros of a quadratic polynomial $f(x)=a x^{2}+b x+c$. By facto $r$ theorem $(x-\alpha)$ and $(x-\beta)$ are the factors of $f(x)$.

$\therefore \quad f(x)=k(x-\alpha)(x-\beta)$ are the factors of $f(x)$

$\Rightarrow ax^{2}+bx+c=k{x^{2}-(\alpha+\beta) x+\alpha \beta}$

$\Rightarrow ax^{2}+bx+c=kx^{2}-k(\alpha+\beta) x+k \alpha \beta$

Comparing the coefficients of $x^{2}, x$ and constant terms on both sides, we get $a=k, b=-k(\alpha+\beta)$ and $k \alpha \beta$

$\Rightarrow \alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a} \quad \Rightarrow \quad \alpha+\beta=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$ and $\alpha \beta=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$

Hence,

Sum of the zeros $=-\frac{b}{a}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$

Product of the zeros $=\frac{c}{a}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$

POLYNOMIALS

REMAKRS :

If $\alpha$ and $\beta$ are the zeros of a quadratic polynomial $f(x)$. The , the polynomial $f(x)$ is given by

$ f(x)=k{x^{2}-(\alpha+\beta) x+\alpha \beta} $

or $f(x)=k${$x^{2}-$( Sum of the zeros) $x+$ Product of the zeros }

POLYNOMIALS

Ex. 5 Find the zeros of the quadratic polynomial $f(x)=x^{2}-2 x-8$ and verify and the relationship between the zeros and their coefficients.

POLYNOMIALS

Sol. $\quad f(x)=x^{2}-2 x-8$

$.\Rightarrow f(x)=x^{2}-4 x+2 x-8 \quad \Rightarrow \quad f(x)=x(x-4)+2(x-4)]$

$\Rightarrow f(x)=(x-4)(x+2)$

Zeros of $f(x)$ are given by $f(x)=0$

$\Rightarrow \quad x^{2}-2 x-8=0 \quad \Rightarrow \quad(x-4)(x+2)=0$

$\Rightarrow x=4$ or $x=-2$

So, $\alpha=4$ and $\beta=-2$

$\therefore$ sum of zeros $\alpha+\beta$

$ =4-2=2 $

POLYNOMIALS

Also, sum of zeros $=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=\frac{-(-2)}{1}=2$

So, sum of zeros $=\alpha+\beta=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$

Now, product of zeros $=\alpha \beta \quad=(4)(-2)=-8$

Also, product of zeros $=\frac{\text { Constan } t \text { term }}{\text { Coefficient of } x^{2}}=\frac{-8}{1}=-8$

$\therefore \quad$ Product of zeros $=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}=\alpha \beta$.

POLYNOMIALS

Ex. 6 Find a quadratic polynomial whose zeros are $5+\sqrt{2}$ and $5-\sqrt{2}$

POLYNOMIALS

Sol. Given $\alpha=5+\sqrt{2}, \beta=5-\sqrt{2}$

$\therefore f(x)=k{x^{2}-x(\alpha+\beta)+\alpha \beta} \quad$ Here, $\quad \alpha+\beta=5+\sqrt{2}+5-\sqrt{2}=10$

and $\alpha \beta=(5+\sqrt{2})(5-\sqrt{2}) \quad=25-2=23$

$\therefore \quad f(x)=k{x^{2}-10 x+23}$, where, $k$ is any non-zero real number.

POLYNOMIALS

Ex. 7 Sum of product of zeros of quadratic polynomial are 5 and 17 respectively. Find the polynomial.

POLYNOMIALS

Sol. Given : Sum of zeros $=5$ and product of zeros $=17$

So, quadratic polynomial is given by

$\Rightarrow f(x)=k${$x^{2}-x$ (sum of zeros) + product of zeros }

$\Rightarrow f(x)=k{x^{2}-5 x+17}$, where, $k$ is any non-zero real number,

POLYNOMIALS

4.6 RELATIONSHIP BETWEEN ZEROS AND COEFFICIENTS OF A CUBIC POLYNOMIAL :

Let $\alpha, \beta, \gamma$ be the zeros of a cubic polynomial $f(x)=a x^{3}+b x^{2}+c x+d, a \neq 0$ Then, by factor theorem, $a-\alpha, x-\beta$ and $x-\gamma$ are factors of $f(x)$. Also, $f(x)$ being a cubic polynomial cannot have more than three linear factors.

$ \begin{aligned} & \therefore \quad f(x)=k(x-\alpha)(x-\beta)(x-\gamma) \quad \Rightarrow \quad a x^{3}+bx^{2}+cx+d=k(x-\alpha)(x-\beta)(x-\gamma) \\ & \Rightarrow \quad ax^{3}+bx^{2}+cx+d=k{x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma} \end{aligned} $

$\Rightarrow ax^{3}+bx^{2}+cx+d=kx x^{3}-k(\alpha+\beta+\gamma) x^{2}+k(\alpha \beta+\beta \gamma+\gamma \alpha) x-k \alpha \beta \gamma$

Comparing the coefficients of $x^{3}, x^{2}, x$ and constant terms on both sides, we get

$ a=k, b=-k(\alpha+\beta+\gamma), c=(\alpha \beta+\beta \gamma+\gamma \alpha) \text { and } d=-k(\alpha \beta \gamma) $

$\Rightarrow \quad \alpha+\beta+\gamma=-\frac{b}{a} \quad \Rightarrow \quad \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$

And, $\quad \alpha \beta \gamma=-\frac{d}{a}$

$\Rightarrow \quad$ Sum of the zeros $=-\frac{b}{a}=-\frac{\text { Coefficient of } x^{2}}{\text { Coefficient of } x^{3}}$

$\Rightarrow$ Sum of the products of the zeros taken two at a time $=\frac{c}{a}=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{3}}$

$\Rightarrow$ Product of the zeros $=-\frac{d}{a}=-\frac{\text { Constan } t \text { term }}{\text { Coefficient of } x^{3}}$

POLYNOMIALS

REMARKS :

Cubic polynomial having $\alpha, \beta$ and $\gamma$ as its zeros is given by

$f(x)=k(x-\alpha)(x-\beta)(x-\gamma)$

$f(x)=k{x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma}$ where $k$ is any non-zero real number.

POLYNOMIALS

Ex. 8 Verify that $\frac{1}{2}, 1-2$ are zeros of cubic polynomial $2 x^{3}+x^{2}-5 x+2$. Also verify the relationship between, the zeros and their coefficients.

POLYNOMIALS :

Sol. $\quad f(x)=2 x^{3}+x^{2}-5 x+2$

$f(\frac{1}{2})=2(\frac{1}{2})^{3}+(\frac{1}{2})^{2}-5(\frac{1}{2})+2 \quad=\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2$

$f(1)=2()^{3}+(1)^{2} 5(1)+2=2+1-5+2=0$.

$f(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2=-16+4+10+2=0$.

Let $\alpha=\frac{1}{2}, \beta=1$ and $\gamma=-2$

Now, Sum of zeros $ \begin{aligned} & =\alpha+\beta+\gamma \\ & =\frac{1}{2}+1-2=-\frac{1}{2} \end{aligned} $

Also, sum of zeros

$ =-\frac{(\text { Coefficient of } x^{2})}{\text { Coefficient of } x^{3}}=-\frac{1}{2} $

So, sum of zeros

$ =\alpha+\beta+\gamma=-\frac{(\text { Coefficient of } x^{2})}{\text { Coefficient of } x^{3}} $

POLYNOMIALS

Sum of product of zeros taken two at a time $\quad=\alpha \beta+\beta \gamma+\gamma \alpha$

$ =\frac{1}{2} \times 1+1 \times(-2)+(-2) \times \frac{1}{2}=-\frac{5}{2} $

Also, $\beta \beta+\beta \gamma+\gamma \alpha=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{3}}=\frac{-5}{2}$

So, sum of product of zeros taken two at a time $=\alpha \beta+\beta \gamma+\gamma \alpha=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{3}}$

Now, Product of zeros $=\alpha \beta \gamma \quad=(\frac{1}{2})(1)(-2)=-1$

Also, product of zeros $=\frac{\text { Constan } t \text { term }}{\text { Coefficient of } x^{3}}=\frac{-2}{2}=-1$

$\therefore \quad$ Product zeros $=\alpha \beta \gamma=-\frac{\text { Constant term }}{\text { Coefficient of } x^{3}}$

POLYNOMIALS

Ex. 9 Find a polynomial with the sum, sum of the product of its zeros taken two at a time, and product its zeros as $3,-1$ and -3 respectively.

POLYNOMIALS

Sol. Given $\alpha+\beta+\gamma=3, \alpha \beta+\beta \gamma+\gamma \alpha=-1$ and $\alpha \beta \gamma=-3$

So, polynomial $f(x)=k{x^{3}-x^{2}(\alpha+\beta+\gamma)+x(\alpha \beta+\beta \gamma+\gamma \alpha)-\alpha \beta \gamma}$

$f(x)=k{x^{3}-3 x^{2}-x+3}$, where $k$ is any non-zero real number.

POLYNOMIALS

4.7 VALUE OF A POLYNOMIAL :

The value of a polynomial $\mathbf{f}(\mathbf{x})$ at $\mathbf{x}=\alpha$ is obtained by substituting $x=\alpha$ in the given polynomial and is denoted by $f(\alpha)$.

For example : If $f(x)=2 x^{3}-13 x^{2}+17 x+12$ then its value at $x=1$ is

$f(1)=2(1)^{3}-13(1)^{2}+17(1)+12=2-13+17+12=18$.

POLYNOMIALS

4.8 ZEROS OF ROOTS OF A POLYNOMIAL :

A real number ’ $\mathbf{a}$ ’ is a zero of a polynomial $f(x)$, if $f(a)=0$, Here ’ $a$ ’ is called a root of the equation $f(x)=0$.

Ex. 10 Show that $x=2$ is a root of $2 x^{3}+x^{2}-7 x-6$

Sol. $p(x)=2 x^{3}+x^{2}-7 x-6$.

Then, $p(2)=2(2)^{3}+(2)^{2}-7(2)-6=16+4-14=0$

Hence $x=2$ is a root of $p(x)$.

POLYNOMIALS

Ex. 11 If $x=\frac{4}{3}$ is a root of the polynomial $f(x)=6 x^{3}-11 x^{2}+k x-20$ then find the value of $k$.

POLYNOMIALS

Sol. $\quad f(x)=6 x^{3}-11 x^{2}+k x-20$

$ \begin{aligned} & f(\frac{4}{3})=6(\frac{4}{3})^{3}-11(\frac{4}{3})^{2}+k(\frac{4}{3})-20=0 \\ & \Rightarrow 6(\frac{64}{27})-11(\frac{16}{9})+\frac{4 k}{3}-20=0 \Rightarrow 6(\frac{64}{27})-11(\frac{16}{9})+\frac{4 k}{3}-20=0 \\ & \Rightarrow \quad 128-176+12 k-180=0 \quad \Rightarrow \quad 12 k+128-356=0 \\ & \Rightarrow \quad 12 k=228 \quad \Rightarrow \quad k=19 \end{aligned} $

POLYNOMIALS

Ex. 12 If $x=2 $ & $ x=0$ are roots of the polynomials $(f) x=2 x^{3}-5 x^{2}+a x+b$, then find the values of $a$ and $b$ /

POLYNOMIALS

Sol. $\quad f(2)=2(2)^{3}-5(2)^{2}+a(2)+b=0$

$\Rightarrow 16-20+2 a+b=0 \Rightarrow \quad 2 a+b=4$ …(i)

$\Rightarrow f(0)=2(0)^{3}-5(0)^{2}+a(0)+b=0 $

$\Rightarrow b=0$

$\Rightarrow 2 a=4 \Rightarrow a=2, b=0$.

POLYNOMIALS

4.9 FACTOR THEOREM :

Let $\mathbf{p}(\mathbf{x})$ be a polynomial of degree greater than or equal to 1 and ’ $\mathbf{a}$ ’ be a real number such that $\mathbf{p ( a )}=\mathbf{0}$. then $(\mathbf{x}-\mathbf{a})$ is a factor of $\mathbf{p}(\mathbf{x})$. Conversely, if $(\mathbf{x}-\mathbf{a})$ is a factor of $\mathbf{p}(\mathbf{x})$, then $\mathbf{p}(\mathbf{a}) \mathbf{=} \mathbf{0}$.

Ex. 13 Show that $x+1$ and $2 x-3$ are factors of $2 x^{3}-9 x^{2}+x+12$.

POLYNOMIALS

Sol. To prove that $(x+1)$ and $(2 x-3)$ are factors of $p(x)=2 x^{3}-9 x^{2}+x+12$ it is sufficient to show that $p(-1)$ and $p(\frac{3}{2})$ both are equal to zero.

$p(-1)=2(-1)^{3}-9(-1)^{2}+(-1)+12=-2-9-1+12=-12+12=0$

And $p(\frac{3}{2})=2(\frac{3}{2})^{3}-9(\frac{3}{2})^{2}+(\frac{3}{2})+12$

$=\frac{27}{4}-\frac{81}{4}+\frac{3}{2}+12=\frac{27-81+6+48}{4}=\frac{-81+81}{4}=0$

POLYNOMIALS

Ex. 14 Find $\alpha$ and $\beta$ if $x+1$ and $x+2$ are factors of $p(x)=x^{3}+3 x^{2}-2 \alpha x+\beta$.

POLYNOMIALS

Sol. $x+1$ and $x+2$ are the factor of $p(x)$.

Then, $p(-1)=0$ & $p(-2)=0$

Therefore, $p(-1)=(-1)^{3}+3(-1)^{2}-2 \alpha(-1)+\beta=0$

$\Rightarrow-1+3+2 \alpha+\beta=0 \Rightarrow \beta=-2 \alpha-2$ …(i)

$ p(-2)=(-2)^{3}+3(-2)^{2}-2 \alpha(-2)+\beta=0 $

$\Rightarrow-8+12+4 \alpha+\beta=0 \Rightarrow \beta=-4 \alpha-4$ …(ii)

From equation (1) and (2)

$ -2 \alpha-2=-4 \alpha-4 \quad \Rightarrow \quad 2 \alpha=-2 \Rightarrow \alpha=-1 $

Put $\alpha=-1$ equation (1) $\quad \Rightarrow \quad \beta=-2(-1)-2=2-2=0$. Hence $\alpha=-1, \beta=0$

POLYNOMIALS

Ex. 15 What must be added to $3 x^{3}+x^{2}-22 x+9$ so that the result is exactly divisible by $3 x^{2}+7 x-6$.

POLYNOMIALS

Sol. Let $p(x)=3 x^{3}+x^{2}-22 x+9$ and $q(x)=3 x^{2}+7 x-6$

We know if $p(x)$ is divided by $q(x)$ which is quadratic polynomial then the remainder be $r(x)$ and degree of $r(x)$ is less than $q(x)$ or Divisor.

$\therefore \quad$ By long division method

Let we added $ax+b$ (linear polynomial) in $p(x)$, so that $p(x)+ax+b$ is exactly divisible by $3 x^{2}+7 x-6$.

Hence, $p(x)+a x+b=s(x)=3 x^{3}-x^{2}-22 x+9+a x+b=3 x^{3}+x^{2} x(22-a)+(9+b)$.

POLYNOMIALS

alt text

Hence, $x(a-2)+b-3=0 . x+0$

$\Rightarrow \quad a-2=0$ & $ b-3=0 \quad \Rightarrow \quad a=2$ and $b=3$

Hence if in $p(x)$ we added $2 x+3$ then it is exactly divisible by $3 x^{2}+7 x-6$.

POLYNOMIALS

Ex. 16 What must be subtracted from $x^{3}-6 x^{2}-15 x+80$ so that the result is exactly divisible by $2+x-12$.

POLYNOMIALS

Sol. Let $a x+b$ be subtracted from $p(x)=x^{3}-6 x^{2}-15 x+80$ so that it is exactly divisible by $x^{2}+x-12$.

$\therefore \quad s(x)=x^{3}-6 x^{2}-15 x+80-(ax+b)$

$=x^{3}-6 x^{2}-(15+a) x+(80-b)$

Dividend $=$ Divisor $\times$ quotient + remainder

But remainder will be zero.

$\therefore \quad$ Dividend $=$ Divisor $\times$ quotient

$\Rightarrow s(x)=(x^{2}+x-12) \times \text { quotient } \quad \Rightarrow \quad s(x)=x^{3}-6 x^{2}-(15+a) x+(80-b) $

POLYNOMIALS

alt text

Hence, $x(4-a)+(-4-b)=0 . x+0$

$\Rightarrow \quad 4-a=0 $ & $(-4-b)=0 \quad \Rightarrow \quad a=4$ and $b=-4$

Hence, if in $p(x)$ we subtract $4 x-4$ then it is exactly divisible by $x^{2}+x-12$.

POLYNOMIALS

Ex. 17 Using factor theorem, factorize : $p(x)=2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$.

POLYNOMIALS

Sol. $\quad 45 \Rightarrow \pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45$

If we put $x=1$ in $p(x)$

$p(1)=2(1)^{4}-7(1)^{3}-13(1)^{2}+63(1)-45$

$p(1)=2-7-13+63-45=65-65=0$

$\therefore \quad x=1$ or $x-1$ is a factor of $p(x)$.

Similarly if we put $x=3$ in $p(x)$

$p(3)=2(3)^{4}-7(3)^{3}-13(3)^{2}+63(3)-45$

$p(3)=162-189-117+189-45=162-162=0$

POLYNOMIALS

Hence, $x=3$ or $(x-3)=0$ is the factor of $p(x)$.

$p(x)=2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$

$\therefore \quad p(x)=2 x^{3}(x-1)-5 x^{2}(x-1)-18 x(x-1)+45(x-1)$

$\Rightarrow p(x)=(x-1)(2 x^{3}-5 x^{2}-18 x+45)$ $\Rightarrow \quad p(x)=(x-1)(2 x^{3}-5 x^{2}-18 x+45)$

$\Rightarrow p(x)=(x-1)[2 x^{2}-(x-3)+x(x-3)-15(x-3)]$ $\Rightarrow \quad p(x)=(x-1)(x-3)(2 x^{2}+x-15)$

$\Rightarrow p(x)=(x-1)(x-3)(2 x^{2}+6 x-5 x-15)$ $\Rightarrow \quad p(x)=(x-1)(x-3)[2 x(x+3)-5(x+3)]$

$\Rightarrow p(x)=(x-1)(x-3)(x+3)(2 x-5)$.

POLYNOMIALS

4.10 REMAINDER THEOREM :

Let $\mathbf{p}(\mathbf{x})$ be any polynomial of degree greater than or equal to one and ’ $\mathbf{a}$ ’ be any real number. If $\mathbf{p}(\mathbf{x})$ is divided by $\mathbf{x}-\mathbf{a})$, then the remainder is equal to $\mathbf{p ( a )}$.

Let $q(x)$ be the quotient and $r(X)$ be the remainder when $p(x)$ is divided by $(x-a)$, then

Dividend $=$ Divisor $\times$ Quotient + Remainder

POLYNOMIALS

Ex. 18 Find the remainder when $f(x)=x^{3}-6 x^{2}+2 x-4$ is divided by $g(x)=1-2 x$.

POLYNOMIALS

Sol. $\quad 1-2 x=0 \Rightarrow 2 x=1 \Rightarrow x=\frac{1}{2}$

$f(\frac{1}{2})=(\frac{1}{2})^{3}-6(\frac{1}{2})^{2}+2(\frac{1}{2})-4=\frac{1}{8}-\frac{3}{2}+1-4=\frac{1-12+8-32}{8}=-\frac{35}{8}$

POLYNOMIALS

Ex. 19 Apply division algorithm to find the quotient $q(x)$ and remainder $r(x)$ on dividing $f(x)=10 x^{4}+17 x^{3}$. $62 x^{2}+30 x-3$ by $b(x)=2 x^{2}-x+1$.

POLYNOMIALS

Sol.

alt text

So, quotient $q(x)=5 x^{2}+11 x-28$ and remainder $r(x)=-9 x+25$.

Now, dividend $=$ Quotient $\times$ Divisor + Remainder

$=(5 x^{2}+11 x-28)(2 x^{2}-x+1)+(-9 x+25)$

$=10 x^{4}-5 x^{3}+5 x^{2}+22 x^{3}-11 x^{2}+11 x-56 x^{2}+28 x-28-9 x+25$

$=10 x^{4}+17 x^{3}-62 x^{2}+30 x-3$

Hence, the division algorithm is verified.

POLYNOMIALS

Ex. 20 Find all the zeros of the polynomial $f(x)=2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$, if two of its zeros are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.

POLYNOMIALS

Sol. Since $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$ are zeros of $f(x)$.

Therefore, $(x+\sqrt{\frac{3}{2}})(x-\sqrt{\frac{3}{2}})=(x^{2}-\frac{3}{2})=\frac{2 x^{2}-3}{2}$ or $2 x^{2}-3$ is a factor of $f(x)$.

alt text

$\therefore \quad 2 x^{4}-2 x^{3}-7 x^{2}+3 x+6=(2 x^{2}-3)(x^{2}-x-2)$

$=(2 x^{2}-3)(x-2)(x+1) $

$=2(x+\sqrt{\frac{3}{2}})(x-\sqrt{\frac{3}{2}})(x-2)(x+1) \quad \text { So, the zeros are }-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, 2,-1 $

POLYNOMIALS

DAILY PRACTICE PROBLESM 4

OBJECTIVE DPP - 4.1

1. If $4 x^{4}-3 x^{3}-3 x^{2}+x-7$ is divided by $1-2 x$ then remainder will be

(A) $\frac{57}{8}$ $\quad$

(B) $-\frac{59}{8}$ $\quad$

(C) $\frac{55}{8}$ $\quad$

(D) $-\frac{55}{8}$

POLYNOMIALS

Que. 1
Ans. B

POLYNOMIALS

2. The polynomials $a x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+$ a when divided by $(x-4)$ leaves remainders $R_1 $&$ R_2$ respectively then value of ’ $a$ ’ if $2 R_1-R_2=0$.

(A) $-\frac{18}{127}$ $\quad$

(B) $\frac{18}{127}$ $\quad$

(C) $\frac{17}{127}$ $\quad$

(D) $-\frac{17}{127}$

POLYNOMIALS

Que. 2
Ans. B

POLYNOMIALS

3. A quadratic polynomial is exactly divisible by $(x+1)$ & $(x+2)$ and leaves the remainder 4 after division by $(x+3)$ then that polynomial is

(A) $x^{2}+6 x+4$ $\quad$

(B) $2 x^{2}+6 x+4$ $\quad$

(C) $2 x^{2}+6 x-4$ $\quad$

(D) $x^{2}+6 x-4$

POLYNOMIALS

Que. 3
Ans. B

POLYNOMIALS

4. The values of $a $ & $ b$ so that the polynomial $x^{3}-a x^{2}-13 x+b$ is divisible by $(x-1) $ & $(x+3)$ are

(A) $a=15, b=3$ $\quad$

(B) $a=3, b=15$ $\quad$

(C) $c=-3, b=15$ $\quad$

(D) $a=3, b=-15$

POLYNOMIALS

Que. 4
Ans. B

POLYNOMIALS

5. Graph of quadratic equation is always a -

(A) straight line $\quad$

(B) circle $\quad$

(C) parabola $\quad$

(D) Hyperbola

POLYNOMIALS

Que. 5
Ans. C

POLYNOMIALS

6. If the sign of ’ $a$ ’ is positive in a quadratic equation then its graph should be $=$

(A) parabola open upwards $\quad$

(B) parabola open downwards $\quad$

(C) parabola open leftwards $\quad$

(D) can’t be determined

POLYNOMIALS

Que. 6
Ans. A

POLYNOMIALS

7. The graph of polynomial $y=x^{3}-x^{2}+x$ is always passing through the point -

(A) $(0,0)$ $\quad$

(B) $(3,2)$ $\quad$

(C) $(1,-2)$ $\quad$

(D) all of these

POLYNOMIALS

Que. 7
Ans. A

POLYNOMIALS

8. How many time, graph of the polynomial $f(x)=x^{3}-1$ will intersect $X$-axis -

(A) 0 $\quad$

(B) 1 $\quad$

(C) 2 $\quad$

(D) 4

POLYNOMIALS

Que. 8
Ans. B

POLYNOMIALS

9. Which of the following curve touches $X$-axis -

(A) $x^{2}-2 x+4$ $\quad$

(B) $3 x^{2}-6 x+1$ $\quad$

(C) $4 x^{2}-16 x+9$ $\quad$

(D) $25 x^{2}-20 x+4$

POLYNOMIALS

Que. 9
Ans. D

POLYNOMIALS

10. In the diagram given below shows the graphs of the polynomial $f(x)=a x^{2}+b x+c$, then

(A) a $<0$, b $<0$ and $c>0$

(B) a $<0$, b $<0$ and $c<0$

(C) $a<0, b>0$ and $c>0$

(D) a $<0$, b $>0$ and $c<0$

POLYNOMIALS

Que. 10
Ans. A

POLYNOMIALS

SUBJECTIVE DPP 4.2

1. Draw the graph of following polynomials.

a. $f(x)=-3$ $\quad$

b. $ f(x)=x-4$ $\quad$

c. $ f(x)=|x+2|$ $\quad$

d. $f(x)=x^{2}-9$ $\quad$

e. $f(x)=2 x^{2}-4 x+5$ $\quad$

f. $ f(x)=x(2-3 x)+1$ $\quad$

g. $f(x)=x^{3}-x^{2}$ $\quad$

h. $ f(x)=x^{3}+2 x$ $\quad$

POLYNOMIALS

2. Find the zeros of quadratic polynomial $p(x)=4 x^{2}+24 x+36$ and verify the relationship between the zeros and their coefficients.

POLYNOMIALS

Sol. 2. $-3,-3$ $\quad$

POLYNOMIALS

3. Find a quadratic polynomial whose zeros are 5 and -5 .

POLYNOMIALS

Sol. 3. $k[x^{2}-25]$ $\quad$

POLYNOMIALS

4. Sum and product of zeros of a quadratic polynomial are 2 and $\sqrt{5}$ respectively. Find the quadratic polynomial.

POLYNOMIALS

Sol. 4. $ k[x^{2}-2 x+\sqrt{5}]$ $\quad$

POLYNOMIALS

5. Find a quadratic polynomial whose zeros are $3+\sqrt{5}$ and $3-\sqrt{5}$.

POLYNOMIALS

Sol. 5. $k[x^{2}-6 x+4]$ $\quad$

POLYNOMIALS

6. Verify that $-5, \frac{1}{2}, \frac{3}{4}$ are zeros of cubic polynomial $4 x^{3}+20 x+2 x-3$. Also verify the relationship between the zeros and the coefficients.

POLYNOMIALS :

7. Divide $64 y^{3}-1000$ by $8 y-20$.

POLYNOMIALS :

Sol. 7. $8 y^{2}+20 y+50$ $\quad$

POLYNOMIALS :

8. If $\alpha, \beta$ are zeros of $x^{2}+5 x+5$, find the value of $\alpha^{-1}+\beta^{-1}$.

POLYNOMIALS :

Sol. 8. $-1$ $\quad$

POLYNOMIALS :

9. Apply the division algorithm to find the quotient and remainder on dividing $p(x)=x^{4}-3 x^{2}+4 x+5$ by $g(x)=x^{2}+1-x$.

POLYNOMIALS :

Sol. 9. Quotient $=x^{2}+x-3$, Remainder $=8$ $\quad$

POLYNOMIALS

10. On dividing $x^{3}-3 x^{2}+x+2$ by polynomial $g(x)$, the quotient remainder were $x \quad 2$ and $-2 x+4$, respectively. Find $g(x)$.

POLYNOMIALS

Sol. 10. $x^{2}-x+1$ $\quad$

POLYNOMIALS :

11. $\alpha, \beta, \gamma$ are zeros of cubic polynomial $x^{3}-12 x^{2}+44 x+c$. If $\alpha, \beta, \gamma$ are in A.P., find the value of $c$.

POLYNOMIALS :

Sol. 11. $c=-48$ $\quad$

POLYNOMIALS :

12. Obtain all the zeros of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

POLYNOMIALS :

Sol. 12. $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1$ and -1 $\quad$

POLYNOMIALS :

13. What must be added to $x^{3}-3 x^{2}-12 x+19$ so that the result is exactly divisible by $x^{2}+x-6$ ?

POLYNOMIALS :

Sol. 13. $2 x+5$ $\quad$

POLYNOMIALS :

14. What must be subtracted from $x^{4}+2 x^{3}-13 x^{2}-12 x+21$ so that the result is exactly divisible by $x^{2}-4 x+3$ ?

POLYNOMIALS :

Sol. 14. $2 x-3$ $\quad$

POLYNOMIALS :

15. If $\alpha, \beta$ are zeros of quadratic polynomial $kx^{2}+4 x+4$, find the value of $k$ such that $(\alpha+\beta)^{2}-2 \alpha \beta=24$.

POLYNOMIALS :

Sol. 15. $k=\frac{2}{3},-1$ $\quad$

POLYNOMIALS :

16. Find the quadratic polynomial sum of whose zeros is 8 and their product is 12 . Hence find $f$ the zeros of the polynomial. $\quad$

[CBSE - 2008]

POLYNOMIALS :

Sol. 16. $k{x^{2}-8 x+12}$ and zeros are $6$ & $2$.

POLYNOMIALS :

17. Is $x=-4$ a solution of the equations $2 x^{2}+5 x-12=0>$

POLYNOMIALS

Sol. 17. Yes $\quad$

POLYNOMIALS :

18. Write the number of zeros of the polynomial $y=f(x)$ whose graph is given figure $\quad$

[CBSE - 2008]

alt text

POLYNOMIALS :

Sol. 18. No. of zeros $=3$ $\quad$

POLYNOMIALS

19. If the product of zeros of the polynomial $a x^{2}-6 x-6$ is 4 , find the value of $a$ .

[CBSE - 2008]

POLYNOMIALS

Sol. 19. $a=-\frac{3}{2}$ $\quad$



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ