knowledge-route Maths10 Ch6


title: “Lata knowledge-route-Class10-Math1-2 Merged.Pdf(1)” type: “reveal” weight: 1

TRIGONOMETRY

TRIGONOMETRY

11.1 TRIGONOMETRY :

Trigonometry means, the science which deals with the measurement of triangles.

11.1 (a) Trigonometric Ratios :

A right angled triangle is shown in Figure. $\angle B$ Is of $90^{\circ}$ Side opposite to $\angle B$ be called hypotenuse. There are two other angles i.e. $\angle A$ and $\angle C$. It we consider $\angle C$ as $\theta$, then opposite side to this angle is called perpendicular and side adjacent to $\theta$ is called base.

TRIGONOMETRY

(i) Six Trigonometry Ratio are :

$ \begin{matrix} \sin \theta=\frac{\text { Perpenicular }}{\text { Hypotenuse }}=\frac{P}{H}=\frac{A B}{A C} & cosec \theta=\frac{\text { Hypoteuse }}{\text { Perpendicular }}=\frac{H}{P}=\frac{A C}{A B} \\ \cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{B}{H}=\frac{B C}{A C} & \sec \theta=\frac{\text { Hypotenuse }}{\text { Base }}=\frac{H}{B}=\frac{A C}{B C} \\ \tan \theta=\frac{\text { Perpendicular }}{\text { Base }}=\frac{P}{B}=\frac{A B}{B C} & \cot \theta=\frac{\text { Base }}{\text { Parpendicular }}=\frac{B}{P}=\frac{B C}{A B} \end{matrix} $

TRIGONOMETRY

(ii) Interrelationship is Basic Trigonometric Ratio :

$ \begin{matrix} \tan \theta=\frac{1}{\cot \theta} \Rightarrow & \cot \theta=\frac{1}{\tan \theta} \\ \cos \theta=\frac{1}{\sec \theta} \Rightarrow & \sec \theta=\frac{1}{\cos \theta} \\ \sin \theta=\frac{1}{cosec \theta} \Rightarrow & cosec \theta=\frac{1}{\sin \theta} \end{matrix} $

We also observe that

$\tan \theta=\frac{\sin \theta}{\cos \theta} \Rightarrow \cot \theta=\frac{\cos \theta}{\sin \theta}$

TRIGONOMETRY

11.1 (b) Trigonometric Table :

$\theta \to$ $\mathbf{0}$ $30^{0}$ $45^{0}$ $60^{0}$ $90^{0}$
Sin $\mathbf{0}$ $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ $\mathbf{1}$
Cos $\mathbf{1}$ $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\mathbf{0}$
Tan $\mathbf{0}$ $\frac{1}{\sqrt{3}}$ $\mathbf{1}$ $\sqrt{3}$ Not
defined
Cot Not
defined
$\sqrt{3}$ $\mathbf{1}$ $\frac{1}{\sqrt{3}}$ $\mathbf{0}$
Sec $\mathbf{1}$ $\frac{2}{\sqrt{3}}$ $\sqrt{2}$ $\mathbf{2}$ Not
defined
Cosec Not
defined
$\mathbf{2}$ $\sqrt{2}$ $\frac{2}{\sqrt{3}}$ $\mathbf{1}$

$$$$

TRIGONOMETRY

11.1 (c) Trigonometric Identities :

(i) $ \sin ^{2} \theta+\cos ^{2} \theta=1$

(A) $\sin ^{2} \theta=1-\cos ^{2} \theta$

(B) $\cos ^{2} \theta=1-\sin 2 \theta$

(ii) $1+\tan ^{2} \theta=\sec ^{2} \theta$

(A) $\sec ^{2} \theta-1=\tan ^{2} \theta$

(B) $\sec ^{2} \theta-\tan ^{2} \theta=1$

(C) $\tan ^{2} \theta-\sec ^{2} \theta=-1$

(iii) $1+\cot ^{2} \theta=cosec^{2} \theta$

(A) $cosec^{2} \theta-1=\cot ^{2} \theta$

(B) $ cosec^{2} \theta-\cot ^{2} \theta=1$

(C) $\cot ^{2} \theta-cosec^{2} \theta=-1$

TRIGONOMETRY

11.1 (d) Trigonometric Ratio of Complementary Angles :

$\sin (90-\theta)=\cos \theta$ $\cos (90-\theta)=\sin \theta$
$\tan (90-\theta)=\cot \theta$ $\cot (90-\theta)=\tan \theta$
$\sec (90-\theta)=cosec \theta$ $cosec(90-\theta)=\sec \theta$

$$$$

TRIGONOMETRY

ILLUSTRATIONS :

Ex. 1 In the given triangle $AB=3 cm$ and $AC=5 cm$. Find all trigonometric ratios.

TRIGONOMETRY

Sol. Using Pythagoras theorem

$ \begin{aligned} & A C^{2}=A B^{2}+B C^{2} \\ & \Rightarrow \quad 5^{2}=3^{2}+p^{2} \\ & \Rightarrow \quad 16=p^{2} \quad \Rightarrow \quad P=c m \\ & \text { Here } P=4 cm, B=3 cm, H=5 cm \\ & \therefore \quad \sin \theta=\frac{P}{H}=\frac{4}{5} \\ & \cos \theta=\frac{B}{H}=\frac{3}{5} \\ & \tan \theta=\frac{P}{B}=\frac{4}{3} \\ \end{aligned} $

TRIGONOMETRY

$ \begin{aligned} & \cot \theta=\frac{B}{P}=\frac{3}{4} \\ & \sec \theta=\frac{H}{B}=\frac{5}{3} \\ & cosec \theta=\frac{H}{P}=\frac{5}{4} \end{aligned} $

TRIGONOMETRY

Ex. 2 If $\tan \theta=\frac{m}{n}$, then find $\sin \theta$.

TRIGONOMETRY

Sol. Let $P=m \alpha$ and $B=n \alpha$

$ \begin{matrix} \therefore \quad & \tan \theta=\frac{P}{B}=\frac{m}{n} \\ & H^{2}=P^{2}+B^{2} \\ & H^{2}=m^{2} \alpha^{2}+n^{2} \alpha^{2} \\ & H=\alpha \sqrt{m^{2}+n^{2}} \\ \therefore \quad & \tan \theta=\frac{P}{H}=\frac{m a}{a \sqrt{m^{2}+n^{2}}} \\ & \sin \theta=\frac{m}{\sqrt{m^{2}+n^{2}}} \end{matrix} $

TRIGONOMETRY

Ex. 3 If $cosec A=\frac{13}{5}$ the prove than $\tan ^{2} A-sing^{2} A=\sin ^{4} A \sec ^{2} A$.

TRIGONOMETRY

Sol. We hare coses $A=\frac{13}{5}=\frac{\text { Hypotenuse }}{\text { Perpendicular }}$

So, we draw a right triangle $A B C$, right angled at $C$ such that hypotenuse $A B=13$ units and perpendicular

$BC=5$ units

$B$ Pythagoras theorem,

$ \begin{aligned} & A B^{2}=B C^{2}+A C^{2} \Rightarrow(13)^{2}=(5)^{2}+A C^{2} \\ & A C^{2}=169-25=144 \\ & A C=\sqrt{144}=12 \text { units } \\ & \qquad \tan A=\frac{B C}{A C}=\frac{5}{12} \\ & \sin A=\frac{B C}{A B}=\frac{5}{13} \\ & \text { and } \sec A=\frac{A B}{A C}=\frac{13}{12} \end{aligned} $

TRIGONOMETRY

L.H.S. $\tan ^{2} A-Sin^{2} A$

$=(\frac{5}{12})^{2}-(\frac{5}{13})^{2}$

$=\frac{25}{144}-\frac{25}{169}$

$=\frac{25(169-144)}{144 \times 169}$

$=\frac{25 \times 25}{144 \times 169}$

TRIGONOMETRY

R.H.S. $=\sin ^{4} A \times \sec ^{2} A$

$=(\frac{5}{13})^{4} \times(\frac{13}{12})^{2}$

$=\frac{5^{4} \times 13^{2}}{13^{4} \times 12^{2}}$

$=\frac{5^{4}}{13^{2} \times 12^{2}}$

$=\frac{25 \times 25}{144 \times 169}$

So, L.H.S. = R.H.S.

Hence Proved.

TRIGONOMETRY

Ex. 4 In $\triangle A B C$, right angled at $B . A C+A B=9 cm$. Determine the value of $\cot C, cosec C, \sec C$.

TRIGONOMETRY

Sol. In $\triangle A B C$, we have $(A C)^{2}=(A B)^{2}+B C^{2}$

$\Rightarrow \quad(9-A B)^{2}=A B^{2}+(3)^{2}$ $[\because A C+A B=9 cm \Rightarrow A C=9-A B]$

$\Rightarrow \quad(81+A B^{2}-18 A B=A B^{2}+9.$

$\Rightarrow \quad 72-18 AB=0$

$\Rightarrow \quad AB=\frac{72}{18}=4 cm$.

TRIGONOMETRY

Now, $\quad A C+A B=9 cm$

$ A C=9-4=5 cm $

So, $\cot C=\frac{B C}{A B}=\frac{3}{4}, cosec C=\frac{A C}{A B}=-\frac{5}{4}, \sec C=\frac{A C}{B C}=\frac{5}{3}$.

TRIGONOMETRY

Ex. 5 Given that $\cos (A-B)=\cos A \cos B+\sin B$, find the value of $\cos 15^{\circ}$.

TRIGONOMETRY

Sol. Putting $A=45^{\circ}$ and $B=30^{\circ}$

We get $\cos (45^{\circ}-30^{\circ})=\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}$

$\Rightarrow \quad \cos 15^{0 .}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}$ $\Rightarrow \quad \cos 15^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$

TRIGONOMETRY

Ex. 6 A Rhombus of side of $10 cm$ has two angles of $60^{\circ}$ each. Find the length of diagonals and also find its area.

TRIGONOMETRY

Sol. Let $A B C D$ be a rhombus of side $10 cm$ and $\angle B A D=\angle B C D=60^{\circ}$. Diagonals of parallelogram bisect each other.

$S, A O=O C$ and $B O=O D$

In right triangle $A O B$

$ \sin 30^{\circ}=\frac{OB}{AB} \quad \quad \quad \quad \quad\quad \cos 30^{\circ}=\frac{OA}{AB}$

$\Rightarrow \quad \frac{1}{2}=\frac{OB}{10} $ $\quad \quad \quad \quad \quad\quad \Rightarrow \frac{\sqrt{3}}{2}=\frac{OA}{10} $

$\Rightarrow \quad OB=5 cm \quad \quad \quad \quad \quad\quad \Rightarrow OA=5 \sqrt{3} $

$\therefore \quad BD=2(OB) \quad \quad \quad \quad \quad\quad \Rightarrow AC=2(OA) $

$\Rightarrow \quad BD=2(5) \quad \quad \quad \quad \quad\quad \Rightarrow AC=2(5 \sqrt{3}) $

$\Rightarrow \quad BD=10 cm \quad \quad \quad \quad \quad\quad \Rightarrow AC=10 \sqrt{3} cm $

TRIGONOMETRY

So, the length of diagonals $A C=10 \sqrt{3} cm $&$ B D=10 cm$

Area of Rhombus $=\frac{1}{2} \times AC \times BD$

$ =\frac{1}{2} \times 10 \sqrt{3} \times 10 \quad=50 \sqrt{3} cm^{2} . $

TRIGONOMETRY

Ex. 7 Evaluate : $\frac{\sec ^{2} 54^{0}-\cot ^{2} 36^{\circ}}{cosec^{2} 57^{0}-\tan ^{2} 33^{0}}+2 \sin ^{2} 38^{\circ} \sec ^{2} 52^{\circ}-\sin ^{2} 45^{\circ}+\frac{2}{\sqrt{3}} \tan 17^{0} \tan 60^{\circ} \tan 73^{\circ}$

TRIGONOMETRY

Sol. $ \frac{\sec ^{2} 54^{0}-\cot ^{2} 36^{0}}{cosec^{2} 57^{0}-\tan ^{2} 33^{0}}+2 \sin ^{2} 38^{0} \sec ^{2} 52^{\circ}-\sin ^{2} 45^{\circ}+\frac{2}{\sqrt{3}} \tan 17^{0} \tan 60^{0} \tan 73^{0}$

$=\frac{\sec ^{2}(90^{0}-36^{\circ})-\cot ^{2} 36^{0}}{cosec(90^{0}-33^{0})-\tan ^{2} 33^{0}}+2 \sin ^{2} 38^{0} \sec ^{2}(90^{\circ}-38^{0})-\sin ^{2} 45^{\circ}+\frac{2}{\sqrt{3}} \tan (90^{\circ}-73^{0}) \tan 73^{0} \tan 60^{\circ}$

$=\frac{cosec^{2} 36^{0}-\cot ^{2} 36^{0}}{\sec ^{2} 33^{0}-\tan ^{2} 33^{0}}+2 \sin ^{2} 38^{0} cosec^{2} 38^{0}-(\frac{1}{\sqrt{2}})^{2}+\frac{2}{\sqrt{3}} \cot 73^{0} \tan 73^{0} \times \sqrt{3}$

$=\frac{1}{1}+2 \sin ^{2} 38^{0} \times \frac{1}{\sin ^{2} 38^{0}}-\frac{1}{2}+\frac{2}{\sqrt{3}} \times \frac{1}{\tan 73^{0}} \times 73^{0} \times \sqrt{3}[\because cosec^{2} \theta-\cot ^{2} \theta=1, \sec ^{2} \theta-\tan ^{2} \theta=1]$

$=1+2-\frac{1}{2}+2=5-\frac{1}{2}=\frac{9}{2}$.

TRIGONOMETRY

Ex. 8 Prove that : $cosec(65^{\circ}+\theta)-\sec (25^{\circ}-\theta)-\tan (55^{\circ}-\theta)+\cot (35^{\circ}+\theta)=0$

TRIGONOMETRY

Sol. $\quad cosec(65^{\circ}+\theta)=cosec{90^{0}-(25^{0}-\theta)}=\sec (25^{\circ}-\theta)$ …(i)

$\cot (35^{\circ}+\theta)=\cot {90^{\circ}-(55^{\circ}-\theta)}=\tan (55^{\circ}-\theta)$…(ii)

$\therefore$ L.H.S. $cosec(65^{\circ}+\theta)-\sec (25^{\circ}-\theta)-\tan (55^{\circ}-\theta)+\cot (35^{\circ}+\theta)$

$=\sec (25^{\circ}-\theta)-\sec (25^{\circ}-\theta)-\tan (55^{\circ}-\theta)+\tan (55^{\circ}-\theta)$

$=0[u \ sin \ g(i) $&$(ii)]$ R.H.S.

TRIGONOMETRY

Ex. 9 Prove that : $\cot \theta-\tan \theta=\frac{2 \cos ^{2} \theta-1}{\sin \theta \cos \theta}$

TRIGONOMETRY

Sol. L.H.S. $\cot \theta-\tan \theta$

$=\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}$ $\quad \quad \quad [\because \cot \theta=\frac{\cos \theta}{\sin \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta}]$

$=\frac{\cos ^{2} \theta-\sin ^{2}}{\sin \theta \cos \theta} \quad=\frac{\cos ^{2} \theta-(1-\cos ^{2} \theta)}{\sin \theta \cos \theta}$ $\quad \quad \quad [\because \sin ^{2} \theta=1-\cos ^{2} \theta]$

$=\frac{\cos ^{2} \theta-1+\cos ^{2} \theta}{\sin \theta \cos \theta}=\frac{2 \cos ^{2} \theta-1}{\sin \theta \cos \theta}$ R.H.S. Hence Proved.

TRIGONOMETRY

Ex. 10 Prove that: $(coses A-\sin A)(\sec A-\cos A)(\tan A+\cot A)=1$.

TRIGONOMETRY

Sol. L.H.S. $(cosec A-\sin A)(\sec A-\cos A)(\tan A+\cot A)$

$ =(\frac{1}{\sin A}-\sin A)(\frac{1}{\cos A}-\cos A)(\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}) $

$ =(\frac{1-\sin ^{2} A}{\sin A})(\frac{1-\cos ^{2} A}{\cos A})(\frac{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}) $

$ =(\frac{\cos ^{2} A}{\sin A})(\frac{\sin ^{2} A}{\cos A})(\frac{1}{\sin A \cos A})$ $[\because \sin ^{2} A+\cos ^{2} A=1]$

$ =1 $

R.H.S. Hence Proved

TRIGONOMETRY

Ex. 11 If $\sin \theta+\cos \theta=m$ and $\sec \theta+cosec \theta=n$, then prove that $n(m^{2}-1)=2 m$.

TRIGONOMETRY

Sol. L.H.S. $n(m^{2}-1)$

$ \begin{matrix} =(\sec \theta + cosec \theta)[(\sin \theta+\cos \theta)^{2}-1] =(\frac{1}{\cos \theta}+\frac{1}{\sin \theta})(\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1) \\ =(\frac{\cos \theta+\sin \theta}{\sin \theta \cos \theta})(1+2 \sin \theta \cos \theta-1) =\frac{(\cos \theta+\sin \theta)}{\sin \theta \cos \theta}(2 \sin \theta \cos \theta) \end{matrix} $

$ =2(\sin \theta+\cos \theta) \quad=2 m \quad \text {R.H.S.} \quad \text { Hence Proved. } $

TRIGONOMETRY

Ex. 12 If $\sec \theta=x+\frac{1}{4 x}$, then prove that $\sec \theta+\tan \theta=2 x$ or $\frac{1}{2 x}$.

TRIGONOMETRY

Sol. $\quad \sec \theta=x+\frac{1}{4 x}$ …(i)

$ \begin{aligned} & \therefore \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \\ & \Rightarrow \quad \tan ^{2} \theta=\sec ^{2} \theta-1 \quad \Rightarrow \quad \tan ^{2} \theta=(x+\frac{1}{4 x})^{2}-1 \\ & \Rightarrow \quad \tan ^{2} \theta=x^{2}+\frac{1}{16 x^{2}}+2 \times x \times \frac{1}{4 x}-1 \\ & \Rightarrow \quad \tan ^{2} \theta=x^{2}+\frac{1}{16 x^{2}}+\frac{1}{2}-1 \quad \Rightarrow \quad \tan \theta= \pm(x-\frac{1}{4 x}) \\ & \Rightarrow \quad \tan ^{2} \theta=(x-\frac{1}{4 x})^{2} \quad \Rightarrow \quad \tan \theta= \pm(x-\frac{1}{4 x}) \\ & \text { So, } \quad \tan \theta=x-\frac{1}{4 x} …(ii)\\ & \text { or } \tan \theta=-(x-\frac{1}{4 x}) …(iii) \end{aligned} $

TRIGONOMETRY

Adding equation (i) and (ii)

$ \sec \theta+\tan \theta=x+\frac{1}{4 x}+x-\frac{1}{4 x} $

$ \sec \theta+\tan \theta=2 x $

Adding equation (i) and (ii)

$ \begin{aligned} & \sec \theta+\tan \theta=x+\frac{1}{4 x}-x+\frac{1}{4 x} \\ & \quad=\frac{1}{2 x} \quad \text { Hence, } \sec \theta+\tan \theta+2 x \text { or } \frac{1}{2 x} . \end{aligned} $

Ex. 13 If $\theta$ is an acute angle and $\tan \theta+\cot \theta=2$ find the value of $\tan ^{9} \theta+\cot ^{9} \theta$

TRIGONOMETRY

Sol. We have, $\tan \theta+\cot \theta=2$

$\Rightarrow \quad \tan \theta+\frac{1}{\tan \theta}=2 $

$\Rightarrow \quad \tan ^{2} \theta+1=2 \tan \theta $

$\Rightarrow \quad(\tan \theta-1)^{2}=0 $

$\Rightarrow \quad \tan \theta=1 $

$\therefore \tan ^{9} \theta+\cot ^{9} \theta $

$=\tan ^{9} 45^{0}+\cot ^{9} 45^{0} $

$=\quad(1)^{9}+(1)^{9} $

TRIGONOMETRY

$\Rightarrow \quad \frac{\tan ^{2} \theta+1}{\tan \theta}=2 $

$\Rightarrow \quad \tan ^{2} \theta-2 \tan \theta+1=0 $

$\Rightarrow \quad \tan \theta-1=0 $

$\quad \Rightarrow \tan \theta=\tan 45^{0}$ $\quad \Rightarrow \theta = 45^{0}$

$=\quad(\tan 45)^{9}+(\cot 45)^{0}$

$\quad =2 \text {. }$

TRIGONOMETRY

DAILY PRACTIVE PROBLEMS 11

OBJECTIVE DPP - 11.1

1. If $\alpha+\beta=\frac{\pi}{2}$ and $\alpha=\frac{1}{3}$, then $\sin \beta$ is

(A) $\frac{\sqrt{2}}{3}$ $\quad$

(B) $\frac{2 \sqrt{2}}{3}$ $\quad$

(C) $\frac{2}{3}$ $\quad$

(D) $\frac{3}{4}$

TRIGONOMETRY

Qus. 1
Ans. B

TRIGONOMETRY

2. If $5 \tan \theta=4$, then value of $\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}$ is

(A) $\frac{1}{3}$ $\quad$

(B) $\frac{1}{6}$ $\quad$

(C) $\frac{4}{5}$ $\quad$

(D) $\frac{2}{3}$

TRIGONOMETRY

Qus. 2
Ans. B

TRIGONOMETRY

3. If $7 \sin \alpha=24 \cos \alpha ; 0<\alpha<\frac{\pi}{2}$, then value of $14 \tan \alpha-75 \cos \alpha-7 \sec \alpha$ is equal to

(A) 1 $\quad$

(B) 2 $\quad$

(C) 3 $\quad$

(D) 4

TRIGONOMETRY

Qus. 3
Ans. B

TRIGONOMETRY

4. Given $3 \beta+5 \cos \alpha ; \beta=5$, then the value of $(3 \cos \beta-5 \sin \beta)^{2}$ is equal to

(A) 9 $\quad$

(B) $\frac{9}{5}$ $\quad$

(C) $\frac{1}{3}$ $\quad$

(D) $\frac{1}{9}$

TRIGONOMETRY

Qus. 4
Ans. A

TRIGONOMETRY

5. If $\tan \theta=4$, then $(\frac{\tan \theta}{\frac{\sin ^{3} \theta}{\cos \theta}+\sin \theta \cos \theta})$ is equal to

(A) 0 $\quad$

(B) $2 \sqrt{2}$ $\quad$

(C) $\sqrt{2}$ $\quad$

(D) 1

TRIGONOMETRY

Qus. 5
Ans. D

TRIGONOMETRY

6. The value of $\tan 5^{\circ} \tan 10^{\circ} \tan 15^{\circ} 20^{\circ}$ $\tan 85^{\circ}$, is

(A) 1 $\quad$

(B) 2 $\quad$

(C) 3 $\quad$

(D) None of these

TRIGONOMETRY

Qus. 6
Ans. A

TRIGONOMETRY

7. As $x$ increases from 0 to $\frac{\pi}{2}$ the value of $\cos x$

(A) increases $\quad$

(B) decreases $\quad$

(C) remains constant $\quad$

(D) increases, then decreases

TRIGONOMETRY

Qus. 7
Ans. B

TRIGONOMETRY

8. Find the value of $x$ from the equation $x \sin \frac{\pi}{6} \cos ^{2} \frac{\pi}{4}=\frac{\cot ^{2} \frac{\pi}{6} \sec \frac{\pi}{3} \tan \frac{\pi}{4}}{cosec^{2} \frac{\pi}{4} cosec \frac{\pi}{6}}$

(A) 4 $\quad$

(B) 6 $\quad$

(C) - 2 $\quad$

(D) 0

TRIGONOMETRY

Qus. 8
Ans. B

TRIGONOMETRY

9. The area of a triangle is $12 sq . cm$. Two sides are $6 cm$ and $12 cm$. The included angle is

(A) $\cos ^{-1}(\frac{1}{3})$ $\quad$

(B) $\cos ^{-1}(\frac{1}{6})$ $\quad$

(C) $\sin ^{-1}(\frac{1}{6})$ $\quad$

(D) $\sin ^{-1}(\frac{1}{3})$

TRIGONOMETRY

Qus. 9
Ans. D

TRIGONOMETRY

10. If $\alpha+\beta=90^{\circ}$ and $\alpha=2 \beta$ then $\cos ^{2} \alpha+\sin ^{2} \beta$ equals to

(A) $\frac{1}{2}$ $\quad$

(B) 0 $\quad$

(C) 1 $\quad$

(D) 2

TRIGONOMETRY

Qus. 10
Ans. A

TRIGONOMETRY

SUBJECTIVE DPP - 11.2

1. Evaluate : (A) $\frac{\sin \theta \cos \theta \sin (90^{\circ}-\theta)}{\cos (90^{\circ}-\theta)}+\frac{\cos \theta \sin \theta \cos (90^{\circ}-\theta)}{\sin (90^{\circ}-\theta)}+\frac{\sin ^{2} 27^{\circ}+\sin ^{2} 63^{\circ}}{\cos ^{2} 40^{\circ}+\cos ^{2} 50^{\circ}}$

(B) $\cos 10^{\circ} \cos 2^{\circ} \cos 3^{\circ} ——– \cos 180^{\circ}$

(C) $\sin (50^{\circ}+\theta)-\cos (40^{\circ}-\theta)+\tan 1^{0} \tan 20^{\circ} \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}$

(D) $\frac{2}{3}(\cos ^{4} 30^{\circ}-\sin ^{4} 45^{\circ})-3(\sin ^{2} 60^{\circ}-\sec ^{2} 45^{\circ})+\frac{1}{4} \cot ^{2} 30^{0}$

(E) $\frac{\cos ^{2} 20^{\circ}+\cos ^{2} 70^{\circ}}{\sec ^{2} 50-\cot ^{2} 40^{\circ}}+2 cosec{ }^{2} 58^{\circ}-2 \cot 58^{\circ} \tan 32^{\circ}-4 \tan 13^{0} \tan 37^{\circ} \tan 45^{\circ} \tan 53^{\circ} \tan 77^{\circ}$

TRIGONOMETRY

Qus. 1 Ans.
(A) 2
(B) 0
(C) 1
(D) $\frac{113}{24}$

TRIGONOMETRY

2. If $\cot \theta=\frac{3}{4}$, prove that $\sqrt{\frac{\sec \theta-cosec \theta}{\sec \theta+cosec \theta}}=\frac{1}{\sqrt{7}}$.

TRIGONOMETRY

3. If $A+B=90^{\circ}$, prove that : $\sqrt{\frac{\tan A \tan B+\tan A \cot B}{\sin A \sec B}-\frac{\sin ^{2} B}{\cos ^{2} A}}=\tan A$

TRIGONOMETRY

4. If $A, B, C$ are the interior angles of a $\triangle A B C$, show that :

(i) $\sin \frac{B+C}{2}=\cos \frac{A}{2}$ $\quad$ (ii) $\cos \frac{B+C}{2}=\sin \frac{A}{2}$

TRIGONOMETRY

Prove the following (Q, 5 to Q. 13)

5. $\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta \sin ^{2} \theta$

TRIGONOMETRY

6. $\quad(\sin \theta+cosec \theta)+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$

[CBSE - 2008]

TRIGONOMETRY

7. $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=\sec \theta cosec \theta+1$

TRIGONOMETRY

8. $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$

TRIGONOMETRY

9. $\frac{\sin A+\cos A}{\sin A+\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A}=\frac{2}{\sin ^{2} A-\cos ^{2} A}=\frac{2}{1-2 \cos ^{2} A}$

TRIGONOMETRY

10. $\quad(\sin \theta+\sec \theta)^{2}+(\cos \theta+cosec \theta)^{2}=(1+\sec \theta$ $cosec \theta)^{2}$

TRIGONOMETRY

11. $(1+\cot \theta-cosec \theta)(1+\tan \theta+\sec \theta)=2$

TRIGONOMETRY

12. $\quad(\sin ^{8} \theta-\cos ^{8} \theta)=(\sin ^{2} \theta-\cos ^{2} \theta)(1-2 \sin ^{2} \theta \cos ^{2} \theta)$

TRIGONOMETRY

13. $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{1+\sin \theta}{\cos \theta}$

TRIGONOMETRY

14. If $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$, then Prove that : $x^{2}+y^{2}+z^{2}=r^{2}$.

TRIGONOMETRY

15. If $\cot \theta+\tan \theta=x$ and $\sec \theta-\cos \theta=y$, then prove that $(x^{2} y)^{2 / 3}-(x y^{2})^{2 / 3}=1$

TRIGONOMETRY

16. If $\sec \theta+\tan \theta=p$, then show that $\frac{p^{2}-1}{p^{2}+1}=\sin \theta$

[CBSE - 2004]

TRIGONOMETRY

17. Prove that : $\tan ^{2} A-\tan ^{2} B=\frac{\cos ^{2} B-\cos ^{2} A}{\cos ^{2} B \cos ^{2} A}=\frac{\sin ^{2} A-\sin ^{2} B}{\sin ^{2} A \sin ^{2} B}$

[CBSE - 2005]

TRIGONOMETRY

18. Prove that : $\frac{1}{\sec x-\tan x}-\frac{1}{\cos x}=\frac{1}{\cos x}=\frac{1}{\cos x}-\frac{1}{\sec x+\tan x}$

[CBSE - 2005]

TRIGONOMETRY

19. Prove : $(1+\tan ^{2} A)+(1+\frac{1}{\tan ^{2} A})=\frac{1}{\sin ^{2} A-\sin ^{4} A}$

[CBSE - 2006]

TRIGONOMETRY

20. Evaluate :

$\tan 7^{\circ} \tan 23^{\circ} \tan 60^{\circ} \tan 67^{\circ} \tan 83^{\circ}+\frac{\cot 54^{\circ}}{\tan 36^{\circ}}+\sin 20^{\circ} \sec 70^{\circ}-2$.

[CBSE - 2007]

TRIGONOMETRY

Qus. 20
Ans. $\sqrt {3}$

TRIGONOMETRY

21. Without using trigonometric tables, evaluate the following :

$(\sin ^{2} 65^{\circ}+\sin ^{2} 25^{\circ})+\sqrt{3}(\tan 5^{\circ} \tan 15^{\circ} \tan 30^{\circ} \tan 75^{\circ} \tan 85^{\circ})$

[CBSE - 2008]

TRIGONOMETRY

Qus. 21
Ans. 2

TRIGONOMETRY

22. If $\sin 3 \theta=\cos (\theta-60^{\circ})$ and $3 \theta$ and $\theta-60^{\circ}$ are acute, find the value of $\theta$

[CBSE - 2008]

TRIGONOMETRY

Qus. 22
Ans. $24^\circ$

TRIGONOMETRY

23. If $\sin \theta=\cos \theta$, find the value of $\theta$.

[CBSE - 2008]

TRIGONOMETRY

Qus. 23
Ans. $45^\circ$

TRIGONOMETRY

24. If $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$, show that $\tan \theta=\frac{1}{\sqrt{3}}$

[CBSE - 2008]

TRIGONOMETRY

25. Prove : $\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)=\sec \theta+cosec \theta$.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ