Chemical and Ionic Equilibrium - Result Question 6

6. Two solids dissociate as follows:

$ \begin{aligned} & A(s) \rightleftharpoons B(g)+C(g) ; K _{p _1}=x atm^{2} \\ & D(s) \rightleftharpoons C(g)+E(g) ; K _{p _2}=y atm^{2} \end{aligned} $

The total pressure when both the solids dissociate simultaneously is

(2019 Main, 12 Jan I)

(a) $\sqrt{x+y}$ atm

(b) $x^{2}+y^{2}$ atm

(c) $(x+y)$ atm

(d) $2(\sqrt{x+y})$ atm

Show Answer

Answer:

Correct Answer: 6. (d)

Solution:

  1. The equilibrium reaction for the dissociation of two solids is given as:

$ A(s) \rightleftharpoons \underset{p_1}B(g)+\underset{p_1+p_2}{C(g)}$

At equilibrium

$ K _{p _1}=x=p _B \cdot p _C=p _1\left(p _1+p _2\right) \hspace{20mm}…(i) $

Similarly, $D(s) \rightleftharpoons C(g)+E(g)$

At equilibrium $\hspace{10mm} p_1 + p_2 + p_3$

$ K_{p_2} =y=p _C \cdot p _E=\left(p _1+p _2 \cdot p _2\right) p _2\hspace{20mm}…(ii) $

On adding Eq. (i) and (ii), we get.

$K _{p _1}+K _{p _2}=x+y=p _1\left(p _1+p _2\right)+p _2\left(p _1+p _2\right)$

$ =\left(p _1+p _2\right)^{2} $

or $\sqrt{x+y}=p _1+p _2 \hspace{20mm}…(iii)$

Now, total pressure is given as

$ \begin{aligned} p _T & =p _B+p _C+p _E \\ & =p _1+\left(p _1+p _2\right)+p _2 \\ & =2\left(p _1+p _2\right)\hspace{20mm}…(iv) \end{aligned} $

On substituting the value of $p _1+p _2$ from Eq. (iii) to Eq. (iv), we get

$ p _T=2 \sqrt{x+y} $