Chemical Bonding Result Question 5

5. Among the following molecules/ions, $\mathrm{C}_2^{2-}, \mathrm{N}_2^{2-}, \mathrm{O}_2^{2-}, \mathrm{O}_2$ Which one is diamagnetic and has the shortest bond length?

(2019 Main, 8 April II)

(a) $\mathrm{C}_2^{2-}$

(b) $\mathrm{O}_2$

(c) $\mathrm{O}_2^{2-}$

(d) $\mathrm{N}_2^{2-}$

Show Answer

Answer:

Correct Answer: 5. ( a )

Solution:

Species MO energy order Bond order $(\mathrm{BO})$ $\boldsymbol{n}$, number of unpaired $e^{-}$ Magnetic character
$\mathrm{C}_2^{2-}\left(14 e^{-}\right)$ $[8 \bar{e}] \pi_{2 p_x^2}=\pi_{2 p_y^2} \sigma_{2 p_x^2}$ $\frac{6-0}{2}=3$ 0 Diamagnetic
$\mathrm{O}_2\left(16 e^{-}\right)$ $[8 \bar{e}] \sigma_{2 p_z^2} \pi_{2 p_x^2}=\pi_{2 p_y^2} \stackrel{*}{\pi}{2 p_x^1}= \stackrel{*}{\pi}{2 p_y^1}$ $\frac{6-2}{2}=2$ 2 Paramagnetic
$\mathrm{O}_2^{2-}\left(18 e^{-}\right)$ $[8 \bar{e}] \sigma_{2 p_z^2} \pi_{2 p_x^2}=\pi_{2 p_y^2} \stackrel{*}{\pi}{2 p_x^2}= \stackrel{*}{\pi}{2 p_y^2}$ $\frac{6-4}{2}=1$ 0 Diamagnetic
$\mathrm{N}_2^{2-}\left(16 e^{-}\right)$ $[8 \bar{e}] \pi_{2 p_x^2}=\pi_{2 p_y^2} \sigma_{2 p_x^2} \stackrel{*}{\pi}{2 p_x^1}= \stackrel{*}{\pi}{2 p_y^1}$ $\frac{6-2}{2}=2$ 2 Paramagnetic

Bond length $\propto \frac{1}{\text { BO (Bond order) }}$. So order of bond length

$\underset{BO= 3}{C_2^ {2-}}$ < $\underset{BO= 2} {O_2}$ = ${N}_2^{2-}$ < $\underset{BO= 1}{O_2^ {2-}}$

The diamagnetic species with shortest bond length is $\mathrm{C}_2^{2-}$ (option-a).