Some Basic Concepts of Chemistry - Result Question 1

1.

5 moles of $A B _2$ weight $125 \times 10^{-3} kg$ and 10 moles of $A _2 B _2$ weight $300 \times 10^{-3} kg$. The molar mass of $A\left(M _A\right)$ and molar mass of $B\left(M _B\right)$ in $kg mol^{-1}$ are

(2019 Main, 12 April I)

(a) $M _A=10 \times 10^{-3}$ and $M _B=5 \times 10^{-3}$

(b) $M _A=50 \times 10^{-3}$ and $M _B=25 \times 10^{-3}$

(c) $M _A=25 \times 10^{-3}$ and $M _B=50 \times 10^{-3}$

(d) $M _A=5 \times 10^{-3}$ and $M _B=10 \times 10^{-3}$

Show Answer

Answer:

Correct Answer: 1. (d)

Solution:

Key Idea To find the mass of $A$ and $B$ in the given question, mole concept is used.

Number of moles $(n)=\dfrac{\text { given mass }(w)}{\text { molecular mass }(M)}$

Compound Mass of $A(g)$ Mass of $B(g)$
$A B _2$ $M _A$ $2 M _B$
$A _2 B _2$ $2 M _A$ $2 M _B$

We know that,

Number of moles $(n)=\dfrac{\text { given mass }(w)}{\text { molecular mass }(M)}$

$ n \times M=w \hspace{30mm} …(A) $

Using equation (A), it can be concluded that

$ \begin{aligned} 5\left(M _A+2 M _B\right) & =125 \times 10^{-3} kg \hspace{25mm}…(i) \\ 10\left(2 M _A+2 M _B\right) & =300 \times 10^{-3} kg \hspace{25mm}…(ii) \end{aligned} $

From equation (i) and (ii)

$ \dfrac{1}{2} \dfrac{\left(M _A+2 M _B\right)}{\left(2 M _A+2 M _B\right)}=\left(\dfrac{125}{300}\right) $

On solving the equation, we obtain

$ \text { and } \quad \begin{aligned} & M _A=5 \times 10^{-3} \\ & M _B=10 \times 10^{-3} \end{aligned} $

So, the molar mass of $A(M_A)$ is $5 \times 10^{-3} kg mol^{-1}$ and $B(M _B)$ is $10 \times 10^{-3} kg mol^{-1}$



Table of Contents