Some Basic Concepts of Chemistry - Result Question 13

27. If 0.50 mole of $\mathrm{BaCl}_2$ is mixed with 0.20 mole of $\mathrm{Na}_3 \mathrm{PO}_4$, the maximum number of moles of $\mathrm{Ba}_3\left(\mathrm{PO}_4\right)_2$ that can be formed is

(1981, 1M)

(a) 0.70

(b) 0.50

(c) 0.20

(d) 0.10

Show Answer

Answer:

Correct Answer: 27. (d)

Solution:

  1. The balanced chemical reaction is

$3 \mathrm{BaCl}_2+2 \mathrm{Na}_3 \mathrm{PO}_4 \longrightarrow \mathrm{Ba}_3\left(\mathrm{PO}_4\right)_2+6 \mathrm{NaCl}$

In this reaction, 3 moles of $\mathrm{BaCl}_2$ combines with 2 moles of $\mathrm{Na}_3 \mathrm{PO}_4$. Hence, 0.5 mole of of $\mathrm{BaCl}_2$ require

$\frac{2}{3} \times 0.5=0.33 \text { mole of } \mathrm{Na}_3 \mathrm{PO}_4 \text {. }$

Since, available $\mathrm{Na}_3 \mathrm{PO}_4(0.2 \mathrm{~mole})$ is less than required mole $(0.33)$, it is the limiting reactant and would determine the amount of product $\mathrm{Ba}_3\left(\mathrm{PO}_4\right)_2$.

$\because 2$ moles of $\mathrm{Na}_3 \mathrm{PO}_4$ gives 1 mole $\mathrm{Ba}_3\left(\mathrm{PO}_4\right)_2$

$\therefore 0.2$ mole of $\mathrm{Na}_3 \mathrm{PO}_4$ would give $\frac{1}{2} \times 0.2=0.1 \mathrm{~mole}^2 \mathrm{Ba}_3\left(\mathrm{PO}_4\right)_2$