Some Basic Concepts of Chemistry - Result Question 7

7. $8 g$ of $NaOH$ is dissolved in $18 g$ of $H _2 O$. Mole dfraction of $NaOH$ in solution and molality (in $mol kg^{-1}$ ) of the solution respectively are

(2019 Main, 12 Jan II)

(a) $0.2,11.11$

(b) $0.167,22.20$

(c) $0.2,22.20$

(d) $0.167,11.11$

Show Answer

Answer:

Correct Answer: 7. (d)

Solution:

Mole dfraction of solute $=\dfrac{\text { number of moles of solute + number of moles solvent }}{\text{number of moles of solute}}$

$ \chi _{\text {Solute }}=\dfrac{n _{\text {Solute }}}{n _{\text {Solute }}+n _{\text {Solvent }}}=\dfrac{\dfrac{w _{\text {Solute }}}{M w _{\text {Solute }}}}{\dfrac{w _{\text {Solute }}}{M w _{\text {Solute }}}+\dfrac{w _{\text {Solvent }}}{M w _{\text {Solvent }}}} $

Given, $\quad w _{\text {Solute }}=w _{NaOH}=8 g$

$M w _{\text {Solute }}=M w _{NaOH}=40 g mol^{-1}$

$w _{\text {Solvent }}=w _{H _2 O}=18 g$

$ M w _{\text {Solvent }}=18 g mol^{-1} $

$\therefore \quad \chi _{\text {Solute }}=\chi _{NaOH}=\dfrac{8 / 40}{\dfrac{8}{40}+\dfrac{18}{18}}=\dfrac{0.2}{0.2+1}=\dfrac{0.2}{1.2}=0.167$

Now, molality $(m)=\dfrac{\text { Moles of solute }}{\text { Mass of solvent (in } kg)}$

$ \begin{aligned} & =\dfrac{\dfrac{w _{\text {Solute }}}{M w _{\text {Solute }}}}{w _{\text {Solvent }}(\text { in } g)} \times 1000=\dfrac{\dfrac{8}{40}}{18} \times 1000 \\ & =\dfrac{0.2}{18} \times 1000=11.11 mol kg^{-1} \end{aligned} $

Thus, mole dfraction of $NaOH$ in solution and molality of the solution respectively are 0.167 and $11.11 mol kg^{-1}$.